Классификация
Для создания в здании оптимального микроклимата применяется система калориферного обогрева, то есть принудительного подогрева с помощью оборудования, которое устанавливается в воздушных каналах.
В зависимости от того, какой теплоноситель используется, выделяют 4 типа калориферов:
- Паровые – применяются чаще всего на промышленных предприятиях, где выработка пара предусмотрена технологическими процессами.
- Электрические – этот вариант самый простой в установке (нужен только источник питания для нагрева встроенных ТЭНов), но требует большого расхода электроэнергии. Использование электрокалорифера считается целесообразным только на объектах, площадь которых не превышает 150 м²
- Водяные – этот тип нагревателя работает на основе горячей воды и устанавливается в системах вентиляции с прямоугольным или круглым сечением на площадях свыше 150 м² Данный тип обогрева надёжен, практичен, прост в обслуживании и недорог.
Особенностью нагревателя является то, что состав поступающего с улицы воздушного потока не должен быть липким, волокнистым, содержать твёрдые частицы. Допустимая запылённость — не более 0,5 мг/м³. Минимальная температура забираемого воздуха -20 °C.
При выборе калорифера учитывают следующие факторы:
- площадь помещения;
- погодные условия в данном климатическом поясе;
- мощность вентиляции.
Нагреватель устанавливают во внутренней части вентиляционной шахты, поэтому он должен соответствовать её параметрам (конфигурации и размеру).
Если производительность будет низкой, то прибор не сможет прогреть воздушные массы.
Если нет возможности установить калорифер с нужными параметрами, то последовательно монтируются несколько механизмов, имеющих меньшую мощность.
Проблемы с установкой системы
Потенциальных проблем, связанных с использованием подобного оборудования, практически нет. Некоторые решаются производителем, другие становятся головной болью покупателя. К основным проблемам можно отнести:
- Образование конденсата. Законы физики определяют то, что при прохождении воздуха с высокой температурой через холодную замкнутую среду происходит образование конденсата. Если температура окружающей среды ниже нуля, то ребра начнут обмерзать. Вся информация, приведенная в этом пункте, определяет существенное снижение эффективности работы устройства.
- Энергоэффективность. Все вентиляционные системы, работающие совместно с рекуператором, зависимы от энергии. Проводимый экономический расчет определяет то, что полезными будут лишь те модели рекуператоров, которые будут сберегать больше энергии, чем тратить.
- Период окупаемости. Как ранее было отмечено, устройство предназначено для экономии энергии. Важным определяющим фактором является то, сколько лет необходимо для того, чтобы покупка и установка рекуператоров окупилась. Если рассматриваемый показатель превышает отметки 10 лет, то смысла в установке нет, так как за это время другие элементы системы потребуют замены. Если расчеты показывают, что период окупаемости составляет 20 лет, то возможность установки устройства не следует рассматривать.
Вышеприведенные проблемы стоит учитывать при выборе теплообменника, которые существует несколько десятков видов.
Автономный воздухонагреватель
Автономный воздухонагреватель
является частью автономной системы электроснабжения, которая представляет собой многоступенчатую систему подготовки топлива и независимых термостатированных отсеков, предполагающих размещение самых ответственных агрегатов и узлов.
Комплектация автономного воздухонагревателя обычно содержит:
- теплообменник из жаростойкой нержавеющей стали;
- воздушный клапан с электрическим приводом;
- подогреватель топлива;
- фильтры грубой и тонкой очистки топлива;
- высоконапорный центробежный вентилятор;
- воздушные термостойкие шланги;
- корпус каркасно-панельного типа с порошковым покрытием;
- дефлектор выхлопных газов;
- дефлектор выхлопных газов;
- блок управления с микропроцессорным терморегулятором и контролем питающей эл.сети;
- теплоизолированные панели из нержавеющей стали;
- дизельная горелка.
Принцип действия автономного воздухонагревателя основан на использовании потока горячего чистого воздуха, вырабатываемого теплопроводом. Нагрев воздуха осуществляется благодаря теплу, получаемому в результате горения жидкого топлива. Топливо, в результате подогрева и многоступенчатой очистки поступает в автоматическую горелку из бака. Благодаря работе горелки формируется топливно-воздушная смесь , которая, воспламеняясь, формирует факел в камере сгорания. До заданной температуры теплообменник разогревается очень быстро. Расход воздуха регулируется клапаном, расположенным перед коллектором вентилятора.
Принцип работы
Вентилятор, теплообменник и конвектор – так в общих чертах выглядит водяное нагревательное устройство.
Принцип работы приточной вентиляции таков:
- Воздушный поток поступает в специальные воздухозаборные решётки, предохраняющие от попадания в каналы вентиляции насекомых, мелких предметов, птиц, животных.
- Фильтры очищают воздух от загрязнений, вредных веществ, пыли.
- Калорифер при помощи тепла, поступающего от водяной магистрали, нагревает его до нужной температуры.
- Рекуператор смешивает вновь поступающий воздух с нагретым.
- Вентилятор подаёт прогретые воздушные массы в помещение, а диффузор распределяет их равномерно по всей площади.
- Шумопоглотители снижают звуковую мощность работающей установки.
- В случае отключения подачи воздуха срабатывают клапаны, не допускающие поступления холодного воздушного потока внутрь помещения.
Пример использования воздухонагревателя VOLCANO в помещении шиномонтажа (температура воды +90 ºС)
Калорифер, не имеющий собственного нагревателя, состоит из двух основных элементов:
- Теплообменник, конструкция которого представлена системой трубок из металла – вода, поступающая из общей системы отопления, достигает здесь необходимой температуры.
- Встроенный вентилятор, разгоняющий прогретый воздушный поток по всей территории.
Сезонный работник
Приточно-вытяжная вентиляция с рекуператором не только обеспечивает интенсивный обмен воздуха в помещениях, но и удерживает в доме часть тепла, полученного с помощью обогревающего устройства. Грунтовой теплообменник может стать хорошим дополнением к этой системе. Благодаря ему свежий воздух, прежде чем попасть в рекуператор, уже предварительно подогревается за счет бесплатного тепла, полученного из грунта. Это не только дает экономию энергии, но и в большинстве случаев предотвращает замерзание конденсата в рекуператоре, установленном на улице (что часто случается, если в него подается слишком холодный воздух).
В нашем климате величина подогрева или охлаждения воздуха в грунтовом теплообменнике может составлять от нескольких градусов до полутора десятков градусов Цельсия. Чем больше разница температуры между внешним воздухом и почвой, тем больше будет теплообмен. Поэтому наибольшую пользу грунтовой теплообменник принесет в период сильного мороза (возможен подогрев воздуха от –20°C до 0°C) или во время жары (охлаждение с 30°C до 20°C).
В межсезонье, когда температура атмосферного воздуха близка к температуре почвы, воздух, после прохождения через грунтовой теплообменник, почти не изменяет своей температуры. Более того, в данном случае от работы грунтового теплообменника можно получить эффект, противоположный ожидаемому (например, воздух с температурой 10°C, то есть довольно холодный, может быть, еще немного охлажден). Из‑за этого использование грунтового теплообменника весной и осенью не имеет смысла. Поэтому систему вентиляции нужно изготавливать таким образом, чтобы при желании свежий воздух можно было подавать напрямую, минуя грунтовой теплообменник.
Методы обвязки
Обвязка представляет собою каркас из арматуры, с помощью которого регулируется поступление горячей воды. Узел обвязки помогает контролировать производительность калорифера приточной вентиляции, управлять им и поддерживать в здании заданный температурный режим.
Расположение узлов обвязки определяется местом установки, схемой воздухообмена, техническими параметрами оборудования. Применяют 2 варианта монтажа:
- Рециркуляционные воздушные массы смешиваются с приточными.
- Осуществляется только рециркуляция воздуха внутри помещения по замкнутому принципу.
С учётом этого существуют 2 метода обвязки:
- 2-ходовыми вентилями – при неконтролируемом обратном расходе воды;
- 3-ходовыми вентилями – при контроле за расходом воды в бойлерной или котельной.
Некоторые производители — например, «Интеграция» — выпускают узлы обвязки различной модификации, представляющие собою целые комплекты, состоящие из клапанов (балансировочных и обратных, двух и трёхходовых), насосов, байпасов, шаровых кранов, манометров, очистительных фильтров.
Схема обвязки узлов калорифера для приточной вентиляции. (Шаровые краны, установленные на входе и на выходе, позволяют перекрывать воду, а термоманометр – контролировать температуру и давление)
Если естественная вентиляция налажена хорошо, то возможностей для успешной работы оборудования гораздо больше. Правильный выбор обвязки в таких случаях эффективен, как для нагрева больших площадей на производстве, так и для частных домов, коттеджей.
Калорифер, используемый для вентиляции, обычно подключают к системе отопления непосредственно в точке воздухозабора. Если действует принудительная вентиляция, то монтаж воздухонагревателя может быть проведён в любом месте.
Калориферы для приточной вентиляции позволяют создать комфортный температурный режим как в промышленных, так и в жилых помещениях
Важно только правильно определиться с выбором теплоносителя, который будет наиболее эффективным (с минимальными затратами при максимальной производительности) в определённых условиях. Автоматизированная система – как, например, щит управления приточной вентиляцией с водяным калорифером, — позволит сделать использование нагревательных приборов для приточной вентиляции удобным и безопасным
Первое тестирование системы
Как только дали отопление, сразу начал тестировать систему
- расход воздуха пока на минимуме — около 100-120 м3/час
- перепад давления в сети отопления на грани чувствительности манометра — 0,1-0,2 Bar.
- без насоса циркуляция через калорифер очень низкая — 90 л/час
- при включенном насосе циркуляция поднялась до — 180-200 л/час
- температура подающей воды — 35-37 °C
- температура обратной воды — 30-31 °C
- температура на улице — около 0 °C
- температура в канале — 23 °C
Тестирование в экстремальных режимах:
- старт системы с перекрытыми кранами, без подачи теплоносителя
- циркуляции в калорифере нет, он наполнен горячей водой — температура обратки +35 °С
- Контроллер открывает наружную заслонку и включает вентилятор (скорость — 30% — 100-120 м3/час)
- температура обратки не меняется, так как нет потока, температура в канале начинает падать
- через пару минут температура в канале упала до +15 °С (термостат защиты от замораживания настроен на +10)
- включился электрический подогреватель и через несколько минут вытянул температуру до уставки
- попробовал такой же эксперимент при высокой скорости вентилятора — 60%. Электрический подогреватель не успел включиться — сработал капиллярный термостат защиты — система обиделась и выключилась
- работа системы без циркуляционного насоса
- температура обратки +35 °С, система нормально стартует
- через пару минут температура обратки падает до +25 °С, температура в канале не поднимается выше +18 °С
- включился электрический подогреватель и через несколько минут вытянул температуру до уставки
- нет электричества и рециркуляции, аварийная остановка системы
- температура на улице -3 °С
- температура обратки +37 °С
- перекрыл краном подачу воды и выключил контроллер (перевел в дежурный режим)
- заслонка закрывалась примерно 40 сек. Аварии по капиллярному термостату не было (он установлен на +15 °С).
- включил Контроллер и включил подачу воды.
- контроллер показал температура обратки +27 °С.
Впечатления после первой ночи эксплуатации:
- ночью система работала с включенным циркуляционным насос (расход воды около 200 л/час) и расходом воздуха около 120 м3/час.
- электрический калорифер не включался (проверяю расход по отдельному счетчику)
- трехходовой клапан открыт не полностью — есть небольшой запас по мощности
- в квартире установлено 5 батарей — на них термоголовки, выставленные в среднее положение. Все батареи были умеренно теплыми
- расход тепла по счетчику отопления за 10 часов — 12 кВт*час включая батареи
Типы
Водяные калориферы в зависимости от сечения нагревающих элементов бывают прямоугольными и круглыми. Прямоугольные водяные калориферы обладают большей теплоотдачей и устанавливаются в промышленные системы вентиляции.
В свою очередь, электрический проще в установке и подключении.
Отличия водяных калориферов
Водяные калориферы, используемые в быту, более компактны, имеют небольшой вес и меньшую мощность. Их конструктивные особенности позволяют устанавливать в самых разных местах, в том числе на потолках помещений – главное обеспечить свободный доступ для сервисного обслуживания.
Разновидности воздушных теплообменников
Основное назначение воздушных теплообменников – охлаждение или нагревание газов и жидкостей. К категории подобного оборудования относятся следующие агрегаты:
- конденсаторы, калориферы;
- радиаторы, воздухоохладители (промышленные и бытовые);
- испарители, драйкулеры;
- паровые нагреватели, рекуператоры.
Применяются такие установки в различных сферах промышленности. Основные из них – металлургия, энергетика, химическая промышленность, нефтегазовая отрасль, легкая промышленность. Однако, чаще всего их используют в различных бытовых целях (если говорить об определенных разновидностях подобных агрегатов, например, воздушный теплообменник на дымоход).
Зависимо от используемой рабочей среды, выделяется несколько типов воздушных теплообменников:
- Воздух-воздух. Чаще всего такие агрегаты применяются при сборке систем вентиляции, производство климатического оборудования.
- Воздух-пар. Применяются для конденсации пара. Такие теплообменники используются при производстве различных парогенераторов.
- Воздух-жидкость. Для охлаждения в таких агрегатах может использоваться водный раствор пропилен и этиленгликоля, обычная вода, соляной раствор. Теплоноситель поступает в секционные теплообменники. На них направлен мощный воздушный поток, которые создают вентиляторы. За счет этого температура значительно уменьшается.
- Воздух-фреон. Такие воздушные теплообменники используется в обустройстве систем кондиционирования для квартир, частных домов, промышленных предприятий, торговых центров. Принцип работы таких агрегатов основан на процессе теплообмена между воздухом и жидкой фазой хладагента. При этом фреон превращается в испаритель, а воздух охлаждается.
- Воздух-масло. Такие теплообменники чаще всего применяются в машиностроении, тяжелой промышленности. Масло смазывает подвижные детали оборудования, выводится к теплообменнику, в котором его температура снижается до рабочей, и оно снова поступает в станок.
Важный узел: как заставить вентиляцию и отопление работать совместно?
Основная задача системы вентиляции − обеспечивать подачу свежего воздуха в помещение. Однако диапазон колебаний температур на улице и в доме может достигать нескольких десятков градусов, поэтому в холодный период года поступающий воздух нужно подогревать. В приточно-вытяжной вентиляции с водяным теплообменником (устройстве, где происходит нагрев уличного воздуха) подогрев можно обеспечить не только с помощью электричества, но и горячей воды из системы отопления. «Связать» системы отопления и вентиляции позволяют узлы регулирования для приточной вентиляции.
1 – ручной клапан 2 – редукционный клапан 3 – обратный клапан 4 – фильтр муфтовый 5 – 3-ходовой клапан 6 – центробежный насос 7 – манометр 8 – термометр
Совместная работа двух систем позволяет достигнуть оптимального климата в помещениях – поступающий из вентиляции теплый воздух «помогает» отопительным приборам нагреть помещение в кратчайшие сроки (как в системах с воздушным отоплениям). Обеспечивает управление совместной работой узел регулирования (смесительный узел). Что собой представляет этот элемент системы? Попробуем разобраться на примере оборудования :
Если говорить понятным для большинства читателей языком, то работу смесительного узла можно описать следующим образом: горячая вода от котла проходит через фильтр-отстойник, где она очищается от мелких частиц грязи, которые могут присутствовать в системе. Далее она проходит через трехходовой клапан (устройство, предназначенное для переключения или смешивания двух разных потоков в один общий поток), где смешивается с водой, поступающей из теплообменника. Циркуляционный насос прокачивает ее в нагреватель вентустановки (теплообменник). Отдав свое тепло приточному воздуху, уже охлажденная, вода поступает обратно в смесительный узел, где часть ее возвращается в систему отопления, а часть поступает в трехходовой клапан, где смешивается с горячей водой из котла.
ак вы поняли, температуру поступающей в теплообменник воды (следовательно, и температуру подаваемого в дом воздуха) регулирует трехходовой клапана смесительного узла. То есть, если запускать в теплообменник приточной вентиляции воду напрямую из котла с температурой 70 градусов, то и воздух будет нагреваться примерно также. Это вряд ли понравится жильцам дома – слишком жарко. Клапан же, «разбавляя» горячую воду холодной, позволяет поддерживать заданную комфортную температуру.
А вот задает нужную температуру сервопривод на трехходовом клапане (прибор, который приводит клапан в движение, а тот в свою очередь или пропускает или не пропускает воду). Он получает сигнал от блока управления приточной установки, который в свою очередь получает показания канального датчика температуры и датчика обратной воды, установленного на калорифере. Если температура обратной воды опускается ниже заданного значения, трехходовой клапан открывается на 100% до тех пор, пока температура обратной воды не поднимется до заданного минимального значения.
Манометры и термометры, входящие в комплект узла смесителя позволяют в процессе работы наблюдать характеристики нагревателя.
С помощью смесительного узла можно модернизировать существующую систему приточно-вытяжной вентиляции с водяным теплообменником. Выбор модели смесительного (регулировочного) узла зависит от мощности вашей вентиляционной установки. Самая маленькая модель смесительного узла для системы вентиляции среднего по размерам коттеджа обойдется в 430 евро.
Теплообменники пластинчатого типа
Самые простые конструкции для систем вентиляции. Теплообменник выполнен в виде камеры, разделенной на отдельные каналы, расположенные параллельно относительно друг друга. Между ними находится тонкая пластинчатая перегородка, которая имеет высокие теплопроводные свойства.
Принцип действия основан на обмене теплом воздушных потоков, то есть отработанный воздух, который удаляется из помещения и отдает свое тепло приточному воздуху, который поступает внутрь дома уже теплым, благодаря такому обмену.
К преимуществам такой технологии можно отнести:
Теплообмен с помощью рекуператора
- простую настройку устройства;
- полное отсутствие каких-либо движущихся деталей;
- высокую эффективность действия.
Ну, и одним наиболее существенным недостатком в работе такого рекуператора является образование конденсата на самой пластине. Обычно такие теплообменники требуется дополнительно монтировать специальными каплеуловителями. Это необходимый параметр, поскольку в зимнее время конденсат может замерзнуть и остановить устройство. Именно поэтому в некоторых устройствах данного типа есть встроенные системы размораживания.
Водяной калорифер: особенности конструкции
Водяной калорифер для приточной вентиляции экономичен в сравнении с электрическими аналогами: для того, чтобы нагреть одинаковый объём воздуха, используется энергии в 3 раза меньше, а производительность гораздо выше. Экономия достигается благодаря подключению к системе центрального отопления. С помощью термостата легко устанавливать необходимый температурный баланс.
Автоматическое управление повышает эффективность. Щит управления приточной вентиляцией с водяным калорифером не требует дополнительных модулей и представляет собою механизм управления и диагностирования аварийных ситуаций.
Состав системы выглядит следующим образом:
- Температурные датчики уличной и обратной воды, приточного воздуха и степени загрязнённости фильтров.
- Заслонки (для рециркуляции и воздушные).
- Клапан нагревателя.
- Циркуляционный насос.
- Капиллярный термостат защиты от замерзания.
- Вентиляторы (вытяжной и приточный) с механизмом контроля.
- Контроль вытяжного вентилятора.
- Пожарная сигнализация.
Конструкция водяного канального нагревателя типа 60-35-2 (размер – 60 см х 35 см, рядность – 2) из оцинкованной стали, предназначенного для систем вентиляции и кондиционирования
Водяной и паровой калориферы представлены в трёх разновидностях:
- Гладкотрубные: большое количество полых трубок расположены вблизи друг от друга; теплоотдача небольшая.
- Пластинчатые: ребристые трубки увеличивают площадь теплоотдачи.
- Биметаллические: патрубки и коллекторы сделаны из меди, алюминиевое оребрение. Наиболее эффективная модель.
Эффективность
Использование грунтово-воздушных теплообменников как для частичного, так и для полного охлаждения и/или нагревания воздуха, вентилируемого в помещении, проходило с переменным успехом. К сожалению, литература переполнена чрезмерными обобщениями о «плюсах» и «минусах» применимости этих систем. Ключевым аспектом грунтово-воздушных теплообменников является пассивная природа работы и возможность применения в широком спектре природных условий.
Грунтово-воздушные теплообменники могут быть крайне рентабельными как в отношении предварительных, так и капитальных затрат, а также долговечными и дешевыми в обслуживании. Однако это сильно зависит от широты местности, высоты над уровнем моря, температуры окружающей среды, максимумов климатической температуры и относительной влажности, солнечной радиации, уровня воды, типа почвы (теплопроводности), содержания влажности в почве и внешнего проектирования системы или ее изоляции. В основном сухая почва с низкой плотностью, малым количеством или полностью отсутствующим слоем грунта может принести меньше всего выгод, хотя плотная влажная почва со значительным слоем грунта должно улучшить характеристики системы.
Система замедленного дренажа конденсата может улучшить тепловые характеристики. Влажная почва в контакте с охлаждающими трубами будет проводить тепло гораздо эффективнее, чем сухая почва.
Подземные охлаждающие трубы гораздо менее эффективны в жарком влажном климате (как во Флориде), где температура окружающей среды приближается к комфортной для людей температуре. Чем выше температура окружающей среды, тем менее эффективна система для охлаждения и осушения воздуха. Однако, почва может использоваться для частичного охлаждения и осушения заменяемого воздуха, поступающего в термическую буферную зону с пассивной солнечной подпиткой, например, в прачечной или террасе/теплице, особенно – в тех зонах, где есть купель, плавательная спа-зона или внутренний плавательный бассейн, где теплый влажный воздух извлекается летом, и требуется более холодный и сухой компенсационный воздух.
Не для всех регионов и мест пригодны грунтово-воздушные теплообменники. Среди условий, которые могут препятствовать правильному использованию систем – поверхностная скальная порода, высокий уровень воды и неподходящее пространство. В частности, в некоторых районах должна быть обеспечена тепловая перезарядка почвы. В бифункциональных системах (как нагревания, так и охлаждения) теплое время года обеспечивает тепловую перезарядку почвы для холодного сезона, а холодный сезон обеспечивает тепловую перезарядку почвы для теплого сезона, хотя даже для них стоит предусматривать вариант перегрузки теплового резервуара.
«Renata Limited» — выдающаяся фармацевтическая компания в Бангладеш проверила пилотный проект, пытающийся обнаружить, можно ли использовать туннельный грунтово-воздушный теплообменник в качестве дополнения к традиционной системе кондиционирования воздуха. Бетонные трубы с общей длиной в 60 футов (около 18,25 м), внутренним диаметром в 9 дюймов (около 23 см) и внешним диаметром в 11 дюймов (около 28 см) были закопаны на глубине в 9 футов (около 2,75 м) под землей, использовался вентилятор с расчетной мощностью 1,5 кВт.
Подземная температура на глубине оставалась на уровне в 28 C. Средняя скорость движения воздуха в туннеле составляла около 5 м/с. КПД подземного теплообменника, созданного таким образом, было малым и составляло от 1,5 до 3 ед. Результаты убедили власти, что в жарком и влажном климате неблагоразумно воплощать на практике концепт грунтово-воздушного теплообменника. Вторичный холодоноситель (сам грунт) изменяет температуру окружающей среды, что является главной причиной провала подобных принципов в жарких, влажных регионах (части Юго-Восточной Азии, американский штат Флорида и так далее).
Однако исследователи из Британии и Турции докладывали о чрезвычайно высоком КПД, превышающем 20 единиц. Температура под землей кажется самым важным показателем для проектирования грунтово-воздушного теплообменника.
Почему задумался про перевод на воду
Причин было три:
- во первых водяной калорифер не «выжигает» кислород. Температура носителя от 45 °C (на улице 0 °C) до 70 °C (на улице -28 °C). Электрические калориферы в основном управляются по ШИМ с периодом около 1 минуты. Но так как площадь контакта с воздухом очень маленькая, то приходится держать высокую температуру.
- во вторых была идея сэкономить за счет более дешевых цен на теплоноситель.
- в третьих, наверное самое главное, мне было интересно. Интерес как раз и перевесил все предупреждения специалистов.
Оценка экономики перехода с электричества на воду:
- данные по среднесуточной температуре в регионе проживания брал с какого-то сайта
- температуре воздуха в канале взял в 15 °C, но по опыту лучше брать 19 °C
- по оптимистичным оценкам экономия от воды — 5 000 — 7 000 руб./год (цены 2012)
- стоимость оборудования и работ в районе 50 000 руб
- прогнозная окупаемость — 8-10 лет
Что хотел реализовать:
- летом работает просто приточка + кондиционер (при необходимости) в обход калорифера
- зимой днем работает нагрев вода + электричество (приоритет на воду)
- зимой ночью работает нагрев электричество + вода (приоритет на электричество — так дешевле)
Как говорится «Гладко было на бумаге, да забыли про овраги».
Контроллер
- датчики температуры:
- температура воздуха в канале
- температура обратной воды на выходе из калорифера
- управление EC вентилятором сигналом 1-10 В
- управление трехходовым краном смесительного узла сигналом 1-10 В
- управление приводом воздушной заслонки
- управление электрокалорифером плавно по сигналу ШИМ, через твердотельные реле
- задействовал программируемые входы аварий:
- авария по внутреннему датчику перегрева в калорифере
- авария по датчику пожарной сигнализации в калорифере
- авария размораживания калорифера по капиллярному термостату
- авария протечки воды
- управление комбинированным нагревом: вода + электричество с приоритетом на воду
- программируемый режим день / ночь
Типовые сценарии:
- В режиме работы «электрокалорифер»:
- плавное регулирование по сигналу ШИМ с периодом 4 сек.
- плавный старт с прогревом
- плавное выключение с продувкой электрокалорифера на низкой скорости вентилятора
- В режиме работы «вода»:
- настраиваются уставки для температуры обратной воды: «темп. рабочая» (+30 °С), «темп. дежурная» (+20 °С), «темп. угроза замораживания» (+10 °С), «темп. прогрева» (+45 °С)
- если температура обратной воды падает ниже «темп. рабочая», то Контроллер переходит в режим работы по приоритету воды вместо температуры в канале
- если температура обратной воды падает ниже «темп. угроза замораживания», то Контроллер переходит в режим аварии, выключает вентилятор, закрывает воздушную заслонку
- при старте системы, сначала прогревается калорифер до «темп. прогрева», после этого открывается заслонка и включается вентилятор
- при остановке, система переходит в дежурный режим, температура обратной воды поддерживается на уровне «темп. дежурная»
- В режиме работы «вода + электро» с приоритетом на воду:
- при старте системы, если температура обратной воды не достигает «темп. прогрева», то подключается электрокалорифер
- в ходе работа, если теплопроизводительность водяного калорифера недостаточна, то включается в работу электрический калорифер
- Переключение режима день / ночь:
Интересные возможности Контроллера, которые планировал использовать:
- возможность регулировки температуры по внешнему датчику температуры в помещении с каскадным коэффициентом, который показывает на сколько градусов надо изменить температуру воздуха в канале при изменении температуры в помещении на 1 °С
- для калориферов из нескольких секций (у меня три секции по 1 кВт) предусмотрена ступенчатая коммутация: одна ступень плавно плюс три ступени дискретно