Расчет для нестандартных комнат
Этот вариант расчета подходит для нестандартных комнат со слишком низкими либо же чересчур высокими потолками. В основу расчета положено утверждение, в соответствии с которым для прогрева 1 м3 жилого пространства нужно порядка 41 Вт мощности батареи. То есть вычисления выполняются по единственной форм#Bе, имеющей такой вид:
A=Bx41,
где:
- А – нужное число секций отопительной батареи;
- B – объем комнаты. Рассчитывается как произведение длины помещения на его ширину и на высоту.
Для примера рассмотрим комнату длиной 4 м, шириной 3,5 м и высотой 3 м. Ее объем составит 42 м3.
Общую потребность этого помещения в тепловой энергии рассчитаем, умножив его объем на упоминавшиеся ранее 41 Вт. Результат – 1722 Вт. Для примера возьмем батарею, каждая секция которой выдает 160 Вт тепловой мощности. Нужное количество секций рассчитаем, разделив суммарную потребность в тепловой мощности на значение мощности каждой секции. Получится 10,8. Как обычно, округляем до ближайшего большего целого числа, т.е. до 11.
Важно! Если вы купили батареи, не разделенные на секции, разделите общую потребность в тепле на мощность целой батареи (указывается в сопутствующей технической документации). Так вы узнаете нужное количество отопительных радиаторов.. Расчетные данные рекомендуется округлять в сторону увеличения по той причине, что компании-производители нередко указывают в технической документации мощность, несколько превышающую реальное значение.
Расчетные данные рекомендуется округлять в сторону увеличения по той причине, что компании-производители нередко указывают в технической документации мощность, несколько превышающую реальное значение.
Расчет необходимого количества радиаторов для отопления
Разница между общей и жилой площадью
Для расчета стоимостной оценки квартиры берется размер площади, прописанный в договоре о долевом соглашении. Исходя из этого правила, покупателям стоит внимательно изучить этот договор и ориентироваться не на рекламу от застройщика и его предложенных квадратных метров. Размер площади, прописанной в договоре, может отличаться от рекламируемой застройщиком. Все зависит от мотивации продавца. Стоимость квартиры зависит от площади. Что в эту площадь включает застройщик, следует выяснять, так как на этом играет цена. Из-за неполной ясности в законе и множества разных трактовок, возникают разногласия и недопонимания. Особенно частые случаи таких проблем в сделках купли-продажи по договору долевого строительства. Застройщик в строительстве жилого здания ориентируется на данные проектной документации. Современное проектирование и строительство осуществляется согласно нормам СНиП 31-01-2003. А расчет жилых площадей действует на базе Инструкции о проведении учета жилищного фонда. На кадастровый учет берутся квартиры с учетом понижающих коэффициентов в общей площади.
Точные расчеты тепловой нагрузки
Значение теплопроводности и сопротивление теплопередачи для строительных материалов
Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.
Что же такое сопротивление теплопередачи (R )? Это величина, обратная теплопроводности (λ ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d ). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:
Расчет по стенам и окнам
Сопротивление теплопередачи стен жилых зданий
Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.
В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:
- Площадь стен – 280 м². В нее включены окна – 40 м² ;
- Материал изготовления стен – полнотелый кирпич (λ=0.56 ). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт ;
- Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт ;
- Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
- Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).
Фактически тепловые потери через стены составят:
(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С
Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:
Расчет по вентиляции
Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:
(480*40*5)/24= 4000 кДж или 1,11 кВт/час
Суммируя все полученные показатели можно найти общие тепловые потери дом:
Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:
(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт
Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.
К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.
Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.
Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.
Анатолий Коневецкий, Крым, Ялта
Анатолий Коневецкий, Крым, Ялта
Уважаемая Ольга! Извините,что обращаюсь к Вам еще раз. Что-то у меня по Вашим формулам получается немыслимая тепловая нагрузка: Кир=0,01*(2*9,8*21,6*(1-0,83)+12,25)=0,84 Qот=1,626*25600*0,37*((22-(-6))*1,84*0,000001=0,793 Гкал/час По укрупненной формуле, приведенной выше, получается всего 0,149 Гкал/час. Не могу понять, в чем дело? Разъясните пожалуйста! Извините за беспокойство. Анатолий.
Анатолий Коневецкий, Крым, Ялта
Специфика и другие особенности
В помещении, для которого производится расчет потребности в отоплении, может быть и другая специфика. Важными становятся следующие показатели:
- температура циркулирующего в радиаторах отопления теплоносителя не должна быть ниже 70 градусов. Если уровень температуры меньше, то число секций в приборе отопления необходимо увеличить;
- в том случае, если между двумя помещениями дверь отсутствует, следует выполнить расчет их общей площади, а потом рассчитать количество радиаторов, необходимых для оптимального обогрева;
- в помещениях, в которых на окнах установлены стеклопакеты, потери тепла сведены к минимуму. Поэтому при выборе радиатора отопления можно устанавливать изделие с меньшим количеством секций.
Определение стоимости отопления
Расчет стоимости тепловой энергии зависит от того, какой источник тепла выбран домовладельцем. Если предпочтение отдано газовому котлу и дом газифицирован, то в общую сумму войдут цена отопительного устройства (примерно 1300 евро) и затраты на его подключение к газопроводу (около 1000 евро).
Далее следует добавить затраты на электроэнергию. Несмотря на то, что основным видом топлива в этом случае является газ, без электричества все равно не обойтись. Оно необходимо для обеспечения работы циркуляционного насоса и элементов автоматики. В среднем котел потребляет 100 Вт в период отопительного сезона и 20 Вт в теплое время года (на обеспечение горячего вдоснабжения).
Рассмотрим метод вычислений для комнат с высокими потолками
Однако расчет отопления по площади не позволяет верно определить количество секций для комнат с потолками выше 3 метров. В этом случае надо применять формулу, учитывающую объем помещения. Для обогрева каждого кубического метра объема по рекомендациям СНИП необходим 41 Вт тепла. Так, для комнаты с потолками высотой 3 м и площадью 24 кв.м, расчет будет следующим:
24 кв.м х 3 м = 72 куб.м (объем комнаты).
72 куб.м х 41 Вт = 2952 Вт (мощность батареи для обогрева помещения).
Теперь следует узнать количество секций. В случае, если в документации радиатора указано, что теплоотдача одной его части в час составляет 180 Вт, надо разделить на это число найденную мощность батареи:
2952 Вт / 180 Вт = 16,4
Это число округляется до целого – получается, 17 секций, чтобы обогреть комнату объемом 72 куб.м.
Отапливаемая площадь квартиры: правильно ли посчитали
О.: Согласно статье 15 Жилищного Кодекса Российской Федерации жилым помещением признается изолированное помещение, которое является недвижимым имуществом и пригодно для постоянного проживания граждан (отвечает установленным санитарным и техническим правилам и нормам, иным требованиям законодательства). Общая площадь жилого помещения состоит из суммы площади всех частей такого помещения, включая площадь помещений вспомогательного использования, предназначенных для удовлетворения гражданами бытовых и иных нужд, связанных с их проживанием в жилом помещении, за исключением балконов, лоджий, веранд и террас. В соответствии с Правилами предоставления коммунальных услуг гражданам, утвержденными постановлением Правительства Российской Федерации от 23 мая 2006 г. № 307, при расчете размера платы за отопление учитывается общая площадь жилого помещения
.Таким образом, балкон и лоджия не входят в отапливаемую площадь жилого помещения, а ванная и туалет — входят. Вероятно, в Вашем случае показатель «отапливаемая площадь» был посчитан до вступления в силу Правил предоставления коммунальных услуг (2006 г.) путём исключения из общей площади квартиры площадей неотапливаемых помещений (лоджий, балконов, веранд, террас и холодных кладовых, тамбуров) на основании правил подсчёта площади. Это может быть подтверждено тех. паспортом на квартиру.
Корректировка результатов
Для того чтобы получить более точный расчет нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла. Это то, из чего с деланы стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т.п. Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.
Количество радиаторов зависит от величины потерь тепла
Окна
На окна приходится от 15% до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:
- соотношение площади окна к площади пола:
- 10% — 0,8
- 20% — 0,9
- 30% — 1,0
- 40% — 1,1
- 50% — 1,2
- остекление:
- трехкамерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85
- обычный двухкамерный стеклопакет — 1,0
- обычные двойные рамы — 1,27.
Стены и кровля
Для учета потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.
Степень теплоизоляции:
- кирпичные стены толщиной в два кирпича считаются нормой — 1,0
- недостаточная (отсутствует) — 1,27
- хорошая — 0,8
Наличие наружных стен:
- внутреннее помещение — без потерь, коэффициент 1,0
- одна — 1,1
- две — 1,2
- три — 1,3
На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т.п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).
Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора
Если расчет проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента. Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7м. Получаете искомый коэффициент.
Посчитаем для примера: пусть высота потолков 3,0м. Получаем: 3,0м/2,7м=1,1. Значит количество секций радиатора, которое рассчитали по площади для данного помещения нужно умножить на 1,1.
Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.
Климатические факторы
Можно внести корректировки в зависимости от средних температур зимой:
- -10оС и выше — 0,7
- -15оС — 0,9
- -20оС — 1,1
- -25оС — 1,3
- -30оС — 1,5
Внеся все требуемые корректировки, получите более точное количество требуемых на обогрев комнаты радиаторов с учетом параметров помещений. Но это еще не все критерии, которые оказывают влияние на мощность теплового излучения. Есть еще технические тонкости, о которых расскажем ниже.
Расчет норматива на употребление тепла
Уважаемый Игорь Викторович!
Я запрашивал у ваших профессионалов данные по определению показателей на употребление тепла. Ответ был получен. Но еще связался с МЭИ, где также дали ссылку на расчеты. Привожу её:
Борисов Константин Борисович.
Столичный Энергетический ВУЗ (Технический Университет)
Для расчета норматива употребления теплоты на теплоснабжение приходится применять следующий документ:
Распоряжение № 306 «Правила установки и определения показателей употребления услуг ЖКХ» (формула 6 – «Формула расчета норматива теплоснабжения»; таблица 7 – «Значение нормируемого удельного расхода энергии тепла на теплоснабжение дома на несколько квартир или дома для жилья»).
Для определения оплаты за теплоснабжение для помещения для проживания (квартиры) приходится применять следующий документ:
Распоряжение № 307 «Правила предъявления услуг ЖКХ гражданам» (Приложение № 2 –«Расчет размера платы за услуги ЖКХ», формула 1).
Как правило, сам расчет норматива употребления теплоты на теплоснабжение квартиры и определения отплаты за теплоснабжение прост.
По желанию, давайте попробуем ориентировочно (грубо) подумать ключевые цифры:
1) Устанавливается самая большая часовая отопительная тепловая нагрузка Вашей жилой площади:
Qмакс = Qуд*Sкв = 74*74 = 5476 ккал/ч
Qуд = 74 ккал/ч — нормируемый удельный расход энергии тепла на теплоснабжение 1 кв. м дома на несколько квартир.
Значение Qуд принято по таблице 1 для строений до 1999 года постройки, высотой (этажностью) 5-9 этажей при температуре воздуха снаружи Тнро=-32 С (для города К).
Sкв= 74 кв. м – площадь квартирных помещений.
2) Вычисляется кол-во энергии тепла, нужное для отапливания Вашей жилой площади на протяжении года:
Qср = Qмакс?[(Тв-Тср.о)/(Тв-Тнро)]?Nо?24 = 5476?[(20-(-5,2))/(20-(-32))]?215*24=13 693 369 ккал = 13,693 Гкал
Тв= 20 С – нормативное значение температуры внутреннего воздуха в помещениях для жилья (квартирах) строения;
Тср.о = -5,2 С — температура воздуха снаружи, средняя за отопительный сезон (для города К);
Nо = 215 суток — длительность периода отопления (для города К).
3) Рассчитывается показатель на теплоснабжение 1 кв. метра:
4) Устанавливается плата за теплоснабжение квартиры по нормативу:
Ро = Sкв ? Норматив_отопления ? Тариф _тепло = 74 ? 0,0154 ? 1223,31 = 1394 руб
Данные взяты по г. Казань.
Следуя этому расчету и применительно непосредственно к дому № 55 в п.Васьково,с введением показателей этого сооружения, приобретаем :
177 — 8 253 -4.4 273 -3.4
12124,2 ? (20-(-8) / 20-(-45) ? 273 ? 24 = 14,622…./ (12= 72,6)=0.0168
0,0168-именно такой показатель приобретаем во время расчета, причем взяты в учет собственно самые жёсткие условия климата: температура в -45, длина периода отопления в 273 дня.
Я очень хорошо понимаю, что парламентариев, не являющимися профессионалами в области отопления, попросить можно ввести показатель 0,0263.
Но приводятся расчеты, в которых указывается, что показатель в 0,0387 единственно верный, и это вызывает огромные сомнения.
Благодаря этому убедительно прошу сосчитать нормы на отопление домов для жилья №№ 54 и 55 в п. Васьково до определенных величин в 0,0168, т. к. в скором времени установка счётчиков на отопление в это их жилых домах не предполагается, а оплачивать по 5300 рублей за отопление очень дорого.
Расчёт радиаторов
В нашем случае мы будем использовать стандартные алюминиевые радиаторы высотой 0,6 м. Мощность каждого ребра такого радиатора при температуре 70 °С составляет 150 Вт. Далее мы посчитаем мощность каждого радиатора и количество условных рёбер:
- комната 1: 28 м3 · 40 Вт · 1,2 = 1344 Вт. Округляем до 1500 и получаем 10 условных рёбер, но поскольку у нас два радиатора, оба под окнами, мы возьмём один с 6-ю рёбрами, второй с 4-мя.
- комната 2: 28 м3 · 40 Вт · 1,2 = 1344 Вт. Округляем до 1500 и получаем один радиатор с 10-ю рёбрами.
- комната 3: 56 м3 · 40 Вт · 1,2 = 2688 Вт Округляем до 2700 и получаем три радиатора: 1-й и 2-й по 5 рёбер, 3-й (боковой) — 8 рёбер.
- прихожая: 22,4 м3 · 40 Вт · 1,2 = 1075,2 Вт. Округляем до 1200 и получаем два радиатора по 4 ребра.
- ванная: 11,2 м3 · 45 Вт · 1,2 = 600 Вт. Тут температура должна быть немного выше, получается 1 радиатор с 4-мя рёбрами.
- туалет: 8,4 м3 · 40 Вт · 1,2 = 403,2 Вт. Округляем до 450 и получаем три ребра.
- кухня: 43,4 м3 · 40 Вт · 1,2 = 2083,2 Вт. Округляем до 2100 и получаем два радиатора по 7 рёбер.
В конечном результате мы видим, что нам необходимо 12 радиаторов общей мощностью:
900 + 600 + 1500 + 750 + 750 + 1200 + 600 + 600 + 600 + 450 + 1050 + 1050 = 10,05 кВт
Исходя из последних расчётов, видно, что наша индивидуальная система отопления без проблем справится с возложенной на неё нагрузкой.
Очень точный расчет радиаторов отопления
Выше мы привели в пример очень простой расчет количества радиаторов отопления на площадь. Он не учитывает многие факторы, такие как качество теплоизоляции стен, вид остекления, минимальная наружная температура и многие другие. Пользуясь упрощенными вычислениями, мы можем наделать ошибок, в результате чего некоторые комнаты получатся холодными, а некоторые – слишком жаркими. Температура поддается коррекции с помощью запорных кранов, но лучше всего предусмотреть все заранее – хотя бы ради экономии материалов.
Если во время строительства своего дома вы уделили достойное внимание его утеплению, то в дальнейшем вы хорошо сэкономите на отоплении. Как производится точный расчет количества радиаторов отопления в частном доме? Будем учитывать понижающие и повышающие коэффициенты
Для начала затронем остекление. Если в доме установлены одинарные окна, используем коэффициент 1,27. Для двойных стеклопакетов коэффициент не применяется (на самом деле он составляет 1,0). Если в доме стоят тройные стеклопакеты, применяем понижающий коэффициент 0,85
Как производится точный расчет количества радиаторов отопления в частном доме? Будем учитывать понижающие и повышающие коэффициенты. Для начала затронем остекление. Если в доме установлены одинарные окна, используем коэффициент 1,27. Для двойных стеклопакетов коэффициент не применяется (на самом деле он составляет 1,0). Если в доме стоят тройные стеклопакеты, применяем понижающий коэффициент 0,85.
Стены в доме выложены в два кирпича или в их конструкции предусмотрен утеплитель? Тогда применяем коэффициент 1,0. Если обеспечить дополнительную теплоизоляцию, можно смело использовать понижающий коэффициент 0,85 – расходы на обогрев уменьшатся. Если теплоизоляции нет, применяем повышающий коэффициент 1,27.
Обратите внимание, что обогрев домовладения с одинарными окнами и плохой теплоизоляцией приводит к большим тепловым (и денежным) потерям. Выполняя расчет количества батарей отопления на площадь, необходимо учитывать соотношение площади полов и окон
В идеале это соотношение составляет 30% – в этом случае применяем коэффициент 1,0. Если вы любите большие окна, а соотношение составит 40%, следует применить коэффициент 1,1, а при соотношении 50% нужно умножить мощность на коэффициент 1,2. Если соотношение составит 10% или 20%, применяем понижающие коэффициенты 0,8 или 0,9
Выполняя расчет количества батарей отопления на площадь, необходимо учитывать соотношение площади полов и окон. В идеале это соотношение составляет 30% – в этом случае применяем коэффициент 1,0. Если вы любите большие окна, а соотношение составит 40%, следует применить коэффициент 1,1, а при соотношении 50% нужно умножить мощность на коэффициент 1,2. Если соотношение составит 10% или 20%, применяем понижающие коэффициенты 0,8 или 0,9.
Высота потолков – не менее важный параметр. Применяем здесь следующие коэффициенты:
Таблица расчета количества секций радиатора отопление в зависимости от площади помещения и высоты потолков.
За потолком находится чердак или еще одна жилая комната? И здесь мы применяем дополнительные коэффициенты. Если наверху отапливаемый чердак (или с утеплением), умножаем мощность на 0,9, а если жилое помещение – на 0,8. За потолком обычный неотапливаемый чердак? Применяем коэффициент 1,0 (или просто не берем его в расчет).
После потолков примемся за стены – вот коэффициенты:
- одна наружная стена — 1,1;
- две наружные стены (угловая комната) – 1,2;
- три наружные стены (последняя комната в вытянутом доме, хате) – 1,3;
- четыре наружные стены (однокомнатный домик, хозпостройка) – 1,4.
Также в расчет берется средняя температура воздуха в самый холодный зимний период (тот самый региональный коэффициент):
- холода до –35 °C – 1,5 (очень большой запас, позволяющий не замерзнуть);
- морозы до –25 °C – 1,3 (подходит для Сибири);
- температура до –20 °C – 1,1 (средняя полоса России);
- температура до –15 °C – 0,9;
- температура до –10 °C – 0,7.
Последние два коэффициента используются в жарких южных регионах. Но даже тут принято оставлять солидный запас на случай холодов или специально для теплолюбивых людей .
Получив итоговую тепловую мощность, необходимую для обогрева выбранного помещения, следует разделить ее на теплоотдачу одной секции. В результате мы получим требуемое количество секций и сможем отправиться в магазин
Обратите внимание, что данные расчеты предусматривают базовую мощность обогрева в размере 100 Вт на 1 кв. м
Если вы боитесь ошибиться в расчетах, обратитесь за помощью к профильным специалистам. Они выполнят максимально точные расчеты и вычислят требуемую для обогрева тепловую мощность.
Информация
При строительстве или ремонте жилого помещения важнейшим вопросом является его обогрев. Расчет эффективной системы отопления – ответственная задача для строителя-теплотехника. Однако, можно самостоятельно сделать расчет радиаторов отопления по площади помещения с помощью онлайн калькулятора. Необходимо только ввести известные данные в программу.
Функции калькулятора
Калькулятор для расчета радиаторов отопления на квадратный метр или по мощности секций является онлайн программой и состоит из:
- блока окон «Вид радиатора»;
- десяти строк ввода данных;
- блока окон «Тип подключения»;
- четырех строк с выводом готовых расчетов.
Программа произведет расчет количества секций радиаторов отопления; тепловых потерь помещения; удельных теплопотерь помещения; количества тепла, выделяемого одной секцией. Всю полученную информацию можно сохранить в файле PDF или вывести на печать.
Принцип работы на калькуляторе
Для получения готовых расчетов следуйте нижеуказанному алгоритму:
Выберете необходимый вид радиатора. В строке ниже автоматически появится мощность одной секции выбранного вида радиатора, в ваттах.
В строках 2-4 укажите размеры комнаты: длину, ширину, высоту в метрах.
Выберете качество остекления.
Выберете площадь остекления (равна отношению площади окна к площади помещения), в %.
Укажите степень утепления.
Выберете климатическую зону – регион проживания.
Укажите количество внешних углов и стен комнаты.
Выберете вариант помещения, которое находится над комнатой.
Укажите температуру теплоносителя, в ℃
Это очень важно, например центральное отопление дает 70-80 градусов, а котел на твердом топливе если есть дома тёплый пол настраивают на 50-60
Выберете планируемый тип подключения.
После этого появится следующая информация:
- Количество секций, в штуках.
- Тепловые потери помещения, в ваттах.
- Удельные теплопотери помещения, в Вт/м2.
- Количество тепла, выделяемого 1 секцией, в ваттах.
Полезная информация
Важнейшими техническими характеристиками различных моделей радиаторов отопления являются:
- Мощность секций радиатора. Чем больше мощность радиатора, тем выше теплоотдача и эффективность отопительного прибора.
- Рабочее давление радиатора. Высокий порог данного параметра позволяет выдерживать гидравлические удары и перепады давления в системе, увеличивает срок службы изделия.
- Материал и вес радиатора. Вид материала (металла, сплава) напрямую влияет на прочность и долговечность отопительного прибора, его коррозионную стойкость. Вес изделия важен при монтаже, особенно, если устанавливать радиаторы будет один человек.
На рынке радиаторов отопления присутствуют четыре основных вида: стальные, чугунные, алюминиевые и биметаллические радиаторы.
Стальные радиаторы – имеют хорошую теплоотдачу и относительно невысокую стоимость. Однако, они не достаточно устойчивы к гидроударам и высокому давлению, подвержены коррозии. Различают панельные и трубчатые радиаторы из стали.
Чугунные радиаторы – самый популярный и долговечный вид радиаторов в России для централизованного отопления. Обладают отличной теплоотдачей, стойкостью к коррозии и гидроударам. В то же время, радиаторы из чугуна долго нагреваются и долго остывают; имеют большой вес, что является недостатком при монтаже одним специалистом.
Алюминиевые радиаторы – одни из самых популярных современных видов радиаторов. Изготавливают литые и экструзионные радиаторы из алюминия
Отличаются высокой теплоотдачей и небольшим весом, что важно при установке приборов. При этом, они чувствительны к гидроударам и перепадам давления в системе отопления, быстро нагреваются и быстро остывают
Биметаллические радиаторы – обладают относительно лучшими характеристиками среди всех видов радиаторов. Изготавливаются из двух материалов: внешней алюминиевой оболочки и внутренних стальных или медных труб. Обладают высокой теплоотдачей и прочностью, хорошей стойкостью к коррозии и гидроударам, имеют сравнительно небольшой вес.
Справка
Радиатор отопления – отопительный прибор, конструктивно состоящий из отдельных элементов трубчатого или вытянутого вида – секций, с внутренними каналами, по которым циркулирует теплоноситель, как правило, вода. Тепло от радиатора отопления отводится конвекцией, излучением и теплопроводностью.
Адвокат Анисимов Представительство и защита в суде
Это имеет значение и для налогообложения, которое зависит от площади квартиры, и для купли-продажи или регистрации права собственности на квартиру, и для отопления квартиры — ведь оплата идет по тарифу за один квадратный метр общей площади. Согласно «Правил предоставления населению услуг газоснабжения» (по состоянию на 02.03.2015 г.) «отапливаемая площадь — общая площадь квартиры (дома) без учета площади лоджий, балконов, террас, а также площади помещений, где отсутствуют теплоотдающие поверхности (радиаторы, регистры, стенки печей, трубопроводы систем отопления и т.п.), которые непосредственно не связаны с отапливаемыми помещениями дверными и другими отверстиями» (п.2 Правил).
Как рассчитать площадь дома — формула расчета
Результаты полученных измерений нужно записать, сделав пометки — такой шаг облегчит задачу в том случае, если вы в будущем соберётесь предпринять ещё какие-либо работы в доме. После этого, надо сложить все результаты замеров, полученные вами для каждой комнаты. Вычисленная величина и станет показателем жилой площади вашего домовладения.
Зона домовладения, относимая условно к жилой представляет собой пространство, предназначенное непосредственно только для проживания домочадцев. Общая же домовая территория заключает в себе все имеющиеся в доме отдельные комнаты, а также различные подсобные зоны. Отсюда можно сделать вывод, что домовая площадь, отведённая под жилую всегда намного меньше общей.
Общие моменты
Чтобы в доме было тепло, система отопления должна восполнять все имеющиеся потери тепла в полном объеме. Тепло уходит через стены, окна, пол, крышу. То есть, при расчете мощности котла, необходимо учитывать степень утепления всех этих частей квартиры или дома. При серьезном подходе у специалистов заказывают расчет теплопотерь здания, а по результатам уже подбирают котел и все остальные параметры системы отопления. Задача эта не сказать что очень сложная, но требуется учесть из чего сделаны стены, пол, потолок, их толщину и степень утепления. Также учитывают какие стоят окна и двери, есть ли система приточной вентиляции и какова ее производительность. В общем, длительный процесс.
Есть второй способ определить теплопотери. Можно по факту определить количество тепла, которое теряет дом/помещение при помощи тепловизора. Это небольшой прибор, который на экране отображает фактическую картину теплопотерь. Заодно можно увидеть где отток тепла больше и принять меры по устранению утечек.
Определение фактических теплопотерь — более легкий способ
Теперь о том, стоит ли брать котел с запасом по мощности. Вообще, постоянная работа оборудования на грани возможностей негативно сказывается на сроке его службы. Потому желательно иметь запас по производительности. Небольшой, порядка 15-20% от расчетной величины. Его вполне достаточно для того, чтобы оборудование работало не на пределе своих возможностей.
Слишком большой запас невыгоден экономически: чем мощнее оборудование, тем дороже оно стоит. Причем разница в цене солидная. Так что, если вы не рассматриваете возможность увеличения отапливаемой площади, котел с большим запасом мощности брать не стоит.
Виды теплообменников
Радиатор отопления — устройство, состоит из секций объединённых в единый прибор, по которым движется нагретый теплоноситель — чаще вода. Отсек — элемент батареи, обычно литая двухтрубчатая конструкция, способный излучать тепло, которое передаётся окружающему воздуху, что позволяет создавать комфортную атмосферу в квартире.
По своей конструкции приборы отопления бывают: панельные и секционные. Встречаются так же регистры — трубчатое изделие с большим диаметром, или фигурный змеевик (полотенцесушитель в ванной), они врезаются в систему.
Обогревательные приборы бывают: стальные, чугунные, алюминиевые, медные. Чугунные изделия, которые мы привыкли видеть в наших домах, нуждаются в окраске, для придания хорошего внешнего вида.
Чугунные
Изделия из чугуна — самые распространённые, у них простая форма и дизайн. Они бывают навесные и на ножках.
Изготавливаются путём литья. Это массивные конструкции, долго хранящие тепло, в плане эксплуатации они наиболее выгодные.
Плюсы:
- хорошо передают тепло;
- устойчивы к коррозии;
- долговечны, служат не менее 30 лет;
- не привередливы к качеству воды.
Минусы:
- тяжёлые, сложны в установке;
- плохой дизайн.
Стальные
Теплообменники из стали бывают панельными и трубчатыми.
Панельные модели изготавливаются из металла толщиной 1,5 мм, поэтому обладают небольшой тепловой ёмкостью. Это качество позволяет быстро производить регулировку температуры. Они эффективны в работе, их КПД достигает 75%. К плюсам так же относится не высокая стоимость и простая эксплуатация. Недостаток — плохая устойчивость к коррозии.
Трубчатые разновидности имеют все плюсы панельного типа, но в отличие от них, обладают большим уровнем давления 9 — 16 бар, у первых 7 — 9. А тепломощность (120 — 1600 Вт), и нагрев воды (120), у обеих моделей равный.
Алюминиевые
Теплообменники из алюминия рекомендованы для частных строений с автономным теплоснабжением. Для использования в централизованном отоплении эта модель не предназначена, так как подвержена воздействию не качественного теплоносителя. На российском рынке представлена компанией «Рифара».
Алюминиевые батареи бывают литыми и экструзионными:
- литые — имеют несколько отсеков, они прочные, с более толстыми стенками и широкими каналами для воды;
- экструзионные — по технологии производства, прибор выдавливается из алюминиевого сплава механическим путём, получается цельное изделие, при этом, число отсеков увеличить нельзя.
Все батареи из алюминия обладают высокой тепловой отдачей, они лёгкие и простые в монтаже. Внешне смотрятся презентабельно. По показателям давления и температурного уровня, их можно приравнять к стальным изделиям.
Биметаллические
Биметаллический теплообменник — трубчатый стальной сердечник и алюминиевый корпус. Он прочный и надёжный, способный выдерживать высокое давление. Несмотря на низкую инертность, имеет повышенную теплоотдачу, при небольшом расходе воды. Внешне выглядит презентабельно, и в уходе не сложен.
Основной минус — высокая цена.
Медные
Медь, для изготовления теплообменников используется давно, но широкое применение такие модели получили недавно. Так как, для обогревательных систем требуется рафинированный вид меди, а по новым технологиям его производство стало недорогим.
При одинаковых технических показателях с другими моделями, они весят меньше, а теплоотдача выше. Данное свойство существенно снижает затраты на электричество.
Медь имеет повышенную механическую прочность, поэтому трубы можно использовать в сочетании с водой нагретой до 150 градусов, при давлении 16 атмосфер.