Теплопроводность металлов

Содержание

Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

  1. Молекул.
  2. Атомов.
  3. Электронов и других частиц структуры металла.

Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Показатели для стали

Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.

Существуют и другие особенности теплопроводности:

  1. Для стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
  2. У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
  3. Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.

Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.

https://youtube.com/watch?v=Aa90TIZ6Pa0

Ссылки

  • Теплопроводность воды и водяного пара
  • Коэффициенты теплопроводности элементов
  • Таблица теплопроводности веществ и материалов

Самый теплопроводный металл: общие характеристики

Именно серебро лидирует в этом негласном конкурсе, имея теплопроводность в 408 Ватт на метр помноженный на Кельвин, опережая по этому показателю такие элементы с высоким коэффициентом удельной теплопроводности, как медь (384 Вт/(м*К), золото (312 Вт/(м*К) и алюминий (203 Вт/(м*К).

Будучи обладателем пальмы первенства, самый теплопроводный металл имеет наиболее широкое применение в различных сферах производства, причем, список того, где можно использовать серебро, можно продолжать до чуть ли не до бесконечности. Примечательно, что благодаря своим уникальным качествам, наиболее теплопроводный металл в мире использовался с самых давних времен, ведь согласно сохранившихся исторических очерков, еще воины древнего Египта широко использовали серебро для максимального ускорения процесса заживления ран и увечий, полученных в жестоких боях. Так, изготавливая тоненькие пластинки из чистого серебра и прикладывая их к ранам различны типов, они с удивлением отмечали целебные свойства, которыми обладал этот благородный металл.

Нельзя не уделить внимание той огромной роли серебра, которую оно играло для православия, ведь в большинстве русских церквей все сосуды и атрибутику старались изготавливать именно из него и ни для кого не секрет, что посеребренная вода, именуемая святой, способна сохранятся годами в закрытых емкостях, не меняя при этом свой цвет и запах. А все потому, что серебро способно выступать, как своеобразное средство для дезинфекции, применимое не только для воды

Однако, на этом полезные свойства данного металла отнюдь не заканчиваются, ведь помимо высокой теплопроводности, он обладает отличной электропроводностью, а также совершенно не подвержен процессам окисления даже при длительном контакте с влажной средой. Благодаря своим многочисленным уникальным свойствам, серебро широко используется для изготовления мелких комплектующих для различного рода электроприборов, и именно поэтому техника с деталями из этого благородного металла пользуется таким большим спросом.

Рассуждая на тему о сферах применения серебра, невозможно упустить из внимания тот вклад, который продолжает вносить этот металл в ювелирное искусство, ведь оно пользуется не меньшей популярностью, чем золото. Причем, помимо всевозможных колец, сережек и браслетов, серебро используется для изготовления изысканных столовых приборов и различного рода декоративных элементов, в том числе интерьерных. И речь идет не только о красоте, но и о функциональности. В качестве примера можно привести зеркала, которые вместо традиционного алюминия покрывают тончайшим слоем серебра, чтобы улучшить их отражающую способность. Кроме того, серебро прекрасно подходит для изготовления целого ряда вспомогательных инструментов и довольно сложно придумать лучший материал, с помощью которого можно будет выполнять чеканку монет и орденов. При этом использовать его можно не только в чистом виде, но и во всевозможных сплавах и соединениях.

Так, определенные химические соединения, в которых принимает непосредственное участие аргентум, активно используются для изготовления зарядных батарей аккумуляторов, которые славятся своей способностью при относительно малом внутреннем сопротивлении генерировать большой ток.

Причины погрешностей в расчетах по показателям теплопроводности

Теплоотдача отопительной батареи – важный критерий мощности или энергии тепла, получаемого за определенное количество времени. Этот показатель измеряется в Вт/м*К или кал/час (есть разночтения в техническом описании к моделям). Для перевода величин пользуются соотношением

1,0 Вт/м*К= 859,8452279 кал/ч.

Биметалл (с медью) и алюминий лидируют по показателям тепловой отдачи. Однако при сравнении нередко возникают разночтения, даже когда верно выполнены все расчеты.

Теплоотдача радиаторов отопления с учетом типа металла представлена в таблице 2.

Популярные статьи  100 ара соток в метры квадратные

Таблица 2

Металл Теплопроводность Вт/(м*К)
Алюминий 237
Биметалл 185-212
Сталь (разной марки) 58-65
Чугун 52-60

Сложнее всего не ошибиться в показателях теплоотдачи алюминиевого радиатора и моделей из биметалла. Эти погрешности легко объяснить другими показателями:

  1. Теплоотдача зависит от конструктивной классификации модели (панельные, трубчатые и секционные), которые также отличаются межосевым расстоянием и степенью проходимости 1 кубометра теплоносителя за одинаковое время.
  2. Батареи выпускаются не из обычного алюминия, а из силумина (сплав с добавлением кремния).
  3. Степень контакта двух материалов в биметаллических конструкциях.
  4. Биметаллические модели бывают двух типов – медь + алюминий или стальная оцинковка + силумин.

Некоторые модели обладают определенной инертностью при прогревании, которая наблюдается в начале отопительного сезона. Поэтому нельзя сопоставлять теплоотдачу чугунных и биметаллических радиаторов, проверяя нагрев прикосновением руки, пока они по-настоящему не «разгонятся».

Теплопроводность металлов

Современные радиаторы прогреваются быстрее

Первых несколько часов уходит на прогревание всей системы и каждого радиатора в отдельности. Это время у каждой модели разное, многое зависит от засоренности отопительного контура. От советских чугунных «гармошек» не следует ожидать высокой тепловой отдачи. Они катастрофически засорены ржавчиной из труб, кальциевым и органическим осадком.

Свойства металлов

Плотность.

Это — одна из важнейших характеристик металлов и сплавов. по плотности металлы делятся на следующие группы:

легкие

(плотность не более 5 г/см 3 ) — магний, алюминий, титан и др.:

тяжелые

— (плотность от 5 до 10 г/см 3 ) — железо, никель, медь, цинк, олово и др. (это наиболее обширная группа);

очень тяжелые

(плотность более 10 г/см 3 ) — молибден, вольфрам, золото, свинец и др.

В таблице 2 приведен значения плотности металлов. (Это и последующие таблицы характеризуют свойства тех металлов, которые составляют основу сплавов для художественного литья).

Таблица 2. Плотность металла.

Металл Плотность г/см 3 Металл Плотность г/см 3
Магний 1,74 Железо 7,87
Алюминий 2,70 Медь 8,94
Титан 4,50 Серебро 10,50
Цинк 7,14 Свинец 11,34
Олово 7,29 Золото 19,32

Температура плавления.

В зависимости от температуры плавления металл подразделяют на следующие группы:

легкоплавкие

(температура плавления не превышает 600 o С) — цинк, олово, свинец, висмут и др.;

среднеплавкие

(от 600 o С до 1600 o С) — к ним относятся почти половина металлов, в том числе магний, алюминий, железо, никель, медь, золото;

Типы подключения радиаторов

Теплоотдача батарей зависит не только от материала, из которого они сделаны. Большое значение имеет тип подключения к трубам поступления и отвода отопления. Радиатор можно подключить:

  1. Диагональным способом. При этом подающая труба присоединяется слева сверху, а отвод – справа снизу. Такой вид является самым эффективным, поскольку позволяет равномерно прогреть всю батарею для хорошей теплоотдачи. Старые чугунные радиаторы отопления (таблица параметров приведена выше) подключались именно таким способом.
  2. Односторонним способом (боковое подключение). При этом трубы присоединяются с одной стороны. Такой вид подключения считается менее эффективным – если в радиаторе много секций, то они не могут прогреться в достаточной мере.
  3. Нижнее подключение – обе трубы присоединяются снизу с обеих сторон.
  4. Верхнее подключение. При данном виде трубы подсоединяются сверху: слева подающая, справа отводящая.

Коэффициент теплопроводности материалов.

Ниже в таблице приведены значения коэффициента теплопроводности для некоторых материалов применяемых в строительстве.

Материал Коэфф. тепл. Вт/(м2*К)
Алебастровые плиты 0,470
Алюминий 230,0
Асбест (шифер) 0,350
Асбест волокнистый 0,150
Асбестоцемент 1,760
Асбоцементные плиты 0,350
Асфальт 0,720
Асфальт в полах 0,800
Бакелит 0,230
Бетон на каменном щебне 1,300
Бетон на песке 0,700
Бетон пористый 1,400
Бетон сплошной 1,750
Бетон термоизоляционный 0,180
Битум 0,470
Бумага 0,140
Вата минеральная легкая 0,045
Вата минеральная тяжелая 0,055
Вата хлопковая 0,055
Вермикулитовые листы 0,100
Войлок шерстяной 0,045
Гипс строительный 0,350
Глинозем 2,330
Гравий (наполнитель) 0,930
Гранит, базальт 3,500
Грунт 10% воды 1,750
Грунт 20% воды 2,100
Грунт песчаный 1,160
Грунт сухой 0,400
Грунт утрамбованный 1,050
Гудрон 0,300
Древесина — доски 0,150
Древесина — фанера 0,150
Древесина твердых пород 0,200
Древесно-стружечная плита ДСП 0,200
Дюралюминий 160,0
Железобетон 1,700
Зола древесная 0,150
Известняк 1,700
Известь-песок раствор 0,870
Ипорка (вспененная смола) 0,038
Камень 1,400
Картон строительный многослойный 0,130
Каучук вспененный 0,030
Каучук натуральный 0,042
Каучук фторированный 0,055
Керамзитобетон 0,200
Кирпич кремнеземный 0,150
Кирпич пустотелый 0,440
Кирпич силикатный 0,810
Кирпич сплошной 0,670
Кирпич шлаковый 0,580
Кремнезистые плиты 0,070
Латунь 110,0
Лед 0°С 2,210
Лед -20°С 2,440
Липа, береза, клен, дуб (15% влажности) 0,150
Медь 380,0
Мипора 0,085
Опилки — засыпка 0,095
Опилки древесные сухие 0,065
ПВХ 0,190
Пенобетон 0,300
Пенопласт ПС-1 0,037
Пенопласт ПС-4 0,040
Пенопласт ПХВ-1 0,050
Пенопласт резопен ФРП 0,045
Пенополистирол ПС-Б 0,040
Пенополистирол ПС-БС 0,040
Пенополиуретановые листы 0,035
Пенополиуретановые панели 0,025
Пеностекло легкое 0,060
Пеностекло тяжелое 0,080
Пергамин 0,170
Перлит 0,050
Перлито-цементные плиты 0,080
Песок 0% влажности 0,330
Песок 10% влажности 0,970
Песок 20% влажности 1,330
Песчаник обожженный 1,500
Плитка облицовочная 1,050
Плитка термоизоляционная ПМТБ-2 0,036
Полистирол 0,082
Поролон 0,040
Портландцемент раствор 0,470
Пробковая плита 0,043
Пробковые листы легкие 0,035
Пробковые листы тяжелые 0,050
Резина 0,150
Рубероид 0,170
Сланец 2,100
Снег 1,500
Сосна обыкновенная, ель, пихта (450…550 кг/куб.м, 15% влажности) 0,150
Сосна смолистая (600…750 кг/куб.м, 15% влажности) 0,230
Сталь 52,0
Стекло 1,150
Стекловата 0,050
Стекловолокно 0,036
Стеклотекстолит 0,300
Стружки — набивка 0,120
Тефлон 0,250
Толь бумажный 0,230
Цементные плиты 1,920
Цемент-песок раствор 1,200
Чугун 56,0
Шлак гранулированный 0,150
Шлак котельный 0,290
Шлакобетон 0,600
Штукатурка сухая 0,210
Штукатурка цементная 0,900
Эбонит 0,160

Теплопроводность металлов

Теплопроводность металлов

Все изделия, используемые человеком, способны передавать и сохранять температуру прикасаемого к ним предмета или окружающей среды. Способность отдачи тепла одного тела другому зависит от вида материала, через который проходит процесс. Свойства металлов позволяют передавать тепло от одного предмета другому, с определенными изменениями, в зависимости от структуры и размера металлической конструкции. Теплопроводность металлов — один из параметров, определяющих их эксплуатационные возможности.

Популярные статьи  Установка дистанционного выключателя света, оснащенного пультом

Что такое теплопроводность и для чего нужна

Процесс переноса энергии атомов и молекул от горячих предметов к изделиям с холодной температурой, осуществляется при хаотическом перемещении движущихся частиц. Такой обмен тепла зависит от агрегатного состояния металла, через который проходит передача. В зависимости от химического состава материала, теплопроводность будет иметь различные характеристики. Данный процесс называют теплопроводностью, он заключается в передаче атомами и молекулами кинетической энергии, определяющей нагрев металлического изделия при взаимодействии этих частиц, или передается от более теплой части – к той, которая меньше нагрета.

Способность передавать или сохранять тепловую энергию, позволяет использовать свойства металлов для достижения необходимых технических целей в работе различных узлов и агрегатов оборудования, используемого в народном хозяйстве. Примером такого применения может быть паяльник, нагревающийся в средней части и передающий тепло на край рабочего стержня, которым выполняют пайку необходимых элементов. Зная свойства теплопроводности, металлы применяют во всех отраслях промышленности, используя необходимый параметр по назначению.

Понятие термического сопротивления и коэффициента теплопроводности

Если теплопроводность характеризует способность металлов передавать температуру тел от одной поверхности к иной, то термическое сопротивление показывает обратную зависимость, т.е. возможность металлов препятствовать такой передаче, иначе выражаясь, – сопротивляться. Высоким термическим сопротивлением обладает воздух. Именно он, больше всего, препятствует передаче тепла между телами.

Количественную характеристику изменения температуры единицы площади за единицу времени на один градус (К), называют коэффициентом теплопроводности. Международной системой единиц принято измерять этот параметр в Вт/м*град. Эта характеристика очень важна при выборе металлических изделий, которые должны передавать тепло от одного тела к другому.

Таблица 1

Металл Коэффициент теплопроводности металлов при температура, °С
— 100 100 300 700
Алюминий 2,45 2,38 2,30 2,26 0,9
Бериллий 4,1 2,3 1,7 1,25 0,9
Ванадий 0,31 0,34
Висмут 0,11 0,08 0,07 0,11 0,15
Вольфрам 2,05 1,90 1,65 1,45 1,2
Гафний 0,22 0,21
Железо 0,94 0,76 0,69 0,55 0,34
Золото 3,3 3,1 3,1
Индий 0,25
Иридий 1,51 1,48 1,43
Кадмий 0,96 0,92 0,90 0,95 0,44 (400°)
Калий 0,99 0,42 0,34
Кальций 0,98
Кобальт 0,69
Литий 0,71 0,73
Магний 1,6 1,5 1,5 1,45
Медь 4,05 3,85 3,82 3,76 3,50
Молибден 1,4 1,43 1,04 (1000°)
Натрий 1,35 1,35 0,85 0,76 0,60
Никель 0,97 0,91 0,83 0,64 0,66
Ниобий 0,49 0,49 0,51 0,56
Олово 0,74 0,64 0,60 0,33
Палладий 0,69 0,67 0,74
Платина 0,68 0,69 0,72 0,76 0,84
Рений 0,71
Родий 1,54 1,52 1,47
Ртуть 0,33 0,09 0.1 0,115
Свинец 0,37 0,35 0,335 0,315 0,19
Серебро 4,22 4,18 4,17 3,62
Сурьма 0,23 0,18 0,17 0,17 0,21
Таллий 0,41 0,43 0,49 0,25 (400 0)
Тантал 0,54 0,54
Титан 0,16 0,15
Торий 0,41 0,39 0,40 0,45
Уран 0,24 0,26 0,31 0,40
Хром 0,86 0,85 0,80 0,63
Цинк 1,14 1,13 1,09 1,00 0,56
Цирконий 0,21 0,20 0,19

Получение

Хром встречается в природе в основном в виде хромистого железняка Fe(CrO2)2 (хромит железа). Из него получают феррохром восстановлением в электропечах коксом (углеродом):

Fe(CrO2)2 + 4C → Fe + 2Cr + 4CO

Феррохром применяют для производства легированных сталей.

Чтобы получить чистый хром, реакцию ведут следующим образом:

1) сплавляют хромит железа с карбонатом натрия (кальцинированная сода) на воздухе:

4Fe(CrO2)2 + 8Na2CO3 + 7O2 → 8Na2CrO4 + 2Fe2O3 + 8CO2

2) растворяют хромат натрия и отделяют его от оксида железа;

3) переводят хромат в дихромат, подкисляя раствор и выкристаллизовывая дихромат;

4) получают чистый оксид хрома восстановлением дихромата натрия углём:

Na2Cr27 + 2C → Cr2O3 + Na2CO3 + CO

5) с помощью алюминотермии получают металлический хром:

Cr2O3 + 2Al → Al2O3 + 2Cr + 130kcal

6) с помощью электролиза получают электролитический хром из раствора хромового ангидрида в воде, содержащего добавку серной кислоты. При этом на катодах совершаются в основном 3 процесса:

  • восстановление шестивалентного хрома до трехвалентного с переходом его в раствор;
  • разряд ионов водорода с выделением газообразного водорода;
  • разряд ионов, содержащих шестивалентный хром, с осаждением металлического хрома;

Cr2O72− + 14H+ + 12e− → 2Cr + 7H2O

Золото

Теплопроводность металлов

Это по преимуществу драгоценный металл, занимающий ведущее место в истории человечества. Помимо этого особого значения, золото является пластичным, прочным и отличным проводником тепла и электричества.

Поскольку золото не подвержено коррозии, оно используется для переноса малых токов в твердотельные электронные компоненты. Эти токи настолько малы, что их можно легко прервать при малейшем признаке коррозии, поэтому золото гарантирует надежность электронных компонентов.

Он также используется для изготовления разъемов для наушников, контактов, реле и соединительных кабелей. Такие устройства, как смартфоны, калькуляторы, ноутбуки, настольные компьютеры и телевизоры, содержат небольшое количество золота.

Специальные стекла для помещений с кондиционированием воздуха также содержат диспергированное золото таким образом, что они помогают отражать солнечное излучение наружу, сохраняя свежесть внутри, когда очень жарко. Таким же образом они помогают поддерживать внутреннее тепло в доме зимой.

Теплопроводность металлов в зависимости от температуры

В таблице представлена теплопроводность металлов в зависимости от температуры при отрицательных и положительных температурах (в интервале от -200 до 2400°C).

Популярные статьи  Система отопления с принудительной циркуляцией

Таблица теплопроводности металлов содержит значения теплопроводности следующих чистых металлов: алюминий Al, кадмий Cd, натрий Na, серебро Ag, калий K, никель Ni, свинец Pb, кобальт Co, бериллий Be, литий Li, сурьма Sb, висмут Bi, магний Mg, цинк Zn, вольфрам W, олово Sn, уран U, железо Fe, палладий Pd, цирконий Zr, марганец Mn, платина Pt, золото Au, медь Cu, родий Rh, таллий Tl, молибден Mo, тантал Ta, иридий Ir.

Следует отметить, что теплопроводность металлов изменяется в широких пределах и может отличаться в десятки раз в одних и тех же условиях. Например, из приведенных в таблице металлов, наибольшей теплопроводностью обладает такой металл, как серебро Ag — его коэффициент теплопроводности равен 392 Вт/(м·град) при 100°С и это самый теплопроводный металл. Наименьшее значение теплопроводности при этой же температуре соответствует металлу висмут Bi с теплопроводностью всего 7,7 Вт/(м·град).

Теплопроводность большинства металлов при нагревании снижается. Их максимальная теплопроводность достигается при низких отрицательных температурах. Например, при температуре минус 100°С серебро имеет теплопроводность 419,8, а висмут — 11,9 Вт/(м·град).

Примечание: В таблице также даны значения теплопроводности металлов сверх-высокой чистоты (до 99,999%). Значение коэффициента теплопроводности в таблице указано в размерности Вт/(м·град).

  • Теплофизические свойства и температура замерзания водных растворов NaCl и CaCl2
  • Теплофизические свойства, состав и теплопроводность алюминиевых сплавов

Теплопроводность строительных материалов, их плотность и теплоемкость

Плотность, теплопроводность и удельная теплоемкость строительных и других популярных материалов. Более 400 материалов в таблице!

Плотность воды, теплопроводность и физические свойства H2O

Подробные таблицы значений плотности воды, ее теплопроводности и других теплофизических свойств в зависимости от температуры…

Физические свойства воздуха: плотность, вязкость, удельная теплоемкость

Таблицы физических свойств воздуха: плотность воздуха, его удельная теплоемкость и вязкость в зависимости от температуры…

Теплопроводность стали и чугуна, физические свойства стали в таблицах при различной температуре…

Рассмотрены тепловые, механические, оптические и электрические характеристики органического стекла…

Физические свойства технической соли

Насыпная плотность, удельная теплоемкость, коэффициент теплопроводности и другие физические свойства технической соли…

Характеристики теплоизоляционных плит Изорок (Isoroc)

Плотность, коэффициент теплопроводности и другие важнейшие характеристики теплоизоляционных плит Изорок различных модификаций…

Удельное электрическое сопротивление стали при различных температурах

Представлены таблицы значений удельного электрического сопротивления сталей различных типов и марок при температурах от 0 до 1350°С…

Плотность азота N2 и его теплофизические свойства В таблице указана плотность азота и его теплофизические…

Таблица плотности веществ

Представлена таблица плотности веществ при комнатной температуре: плотность более 500 веществ и материалов (пластик, металлы, минералы, пищевые продукты…

Свойства маргарина

Свойства маргарина распространенных сортов Плотность, теплоемкость, теплопроводность и температуропроводность представлены для животного, безмолочного и сливочного…

Теплопроводность, теплоемкость, вязкость, свойства масла АМТ-300

В таблице представлены теплофизические свойства масла АМТ-300 такие, как давление паров, плотность масла, теплопроводность, удельная…

Теплоизоляционные материалы: виды, свойства, теплопроводность

Представлены виды, свойства и теплопроводность теплоизоляционных материалов, их состав, и плотность. Теплопроводность теплоизоляции изменяется в…

Плотность и теплопроводность теплоизоляции в виде плит и сегментов В таблице даны значения плотности и…

Плотность жидкостей

Приведена таблица плотности жидкостей при различных температурах и атмосферном давлении для наиболее распространенных жидкостей. Значения…

Теплопроводность пенобетона различной плотности

Таблицы значений коэффициента теплопроводности и плотности пенобетона и других ячеистых материалов при комнатной температуре…

Удельная теплота сгорания топлива и горючих материалов

Таблицы удельной теплоты сгорания топлива и горючих материалов (уголь, дрова, кокс, торф, керосин, нефть, спирт, бензин, природный газ, метан, водород и т. д.)

Инженеру про алюминий

Наиболее привлекательным для инженеров физическим свойством алюминия является его плотность 2,7 г/см3, что составляет всего лишь треть от плотности сталей.

Коррозионная стойкость алюминия

Вторым по важности свойством является его хорошая коррозионная стойкость, хотя алюминий с точки зрения химии и не слишком благородный металл. Все это потому, что «свежий» алюминий (и алюминиевые сплавы) реагирует с кислородом и водяным паром в воздухе с образованием тонкой, плотной оксидной пленки, которая защищает нижележащий металл от дальнейшего взаимодействия с окружающей средой

Все это потому, что «свежий» алюминий (и алюминиевые сплавы) реагирует с кислородом и водяным паром в воздухе с образованием тонкой, плотной оксидной пленки, которая защищает нижележащий металл от дальнейшего взаимодействия с окружающей средой.

Поэтому технический алюминий и большинство его сплавов без легирования медью показывают очень хорошее сопротивление коррозии в жидкостях с рН в кислотном интервале от 5 до 8, которому соответствуют и большинство атмосферных условий окружающей среды.

Температурное расширение алюминия

Линейное температурное расширение алюминия и его сплавов составляет 24·10-6 на 1 градус Цельсия – в два раза больше чем у сталей. Это необходимо учитывать во многих конструкциях, в которых необходимо обеспечивать свободное температурное расширение элементов. При ограничении температурного расширение (или сжатия) в алюминиевом элементе из-за более низкого модуля упругости возникают напряжения, величина которых составляет 2/3 от напряжений, которые возникли бы в аналогичном стальном элементе.

Оцените статью
Максим Мальцев
Теплопроводность металлов
Печь для сжигания мусора на даче своими руками
Adblock
detector