Системы обогрева грунта — как устроены и работают

Обустройство пола в теплице

По своей конструкции и принципу использования площади теплицы бывают двух видов: парник, в котором задействуют основной грунт участка, накрытый конструкцией из каркаса, обтянутого полиэтиленом или поликарбонатом, и теплицы — оранжереи, имеющие полноценный фундамент и предназначенные для выращивания урожая и рассады в специальных контейнерах на стеллажах или полу.

Последние часто используют для выращивания клубники по голландской технологии, поскольку они обеспечивают урожай круглый год.

Пол в теплице-оранжерее, не должен быть просто грунтом, так как каждый раз после полива он будет превращаться в грязь. Можно выполнить насыпь из щебня, песка и даже гальки, но перемещать по такой поверхности, например, тележку или большие мешки с грунтом довольно затруднительно.

Для того чтобы в такой теплице было не только тепло, чисто, но и комфортно, выполняют стяжку пола бетоном. Если позволяют средства, а душа требует красоты, можно выложить пол теплицы тротуарной плиткой, но в пазах между плитками, от сырости может образоваться грибок или завестись муравьи.

В европейских странах пол теплицы довольно часто отделывают керамической плиткой. Согласитесь это очень красиво, и если, например, вы увлекаетесь выращиванием тропических растений, вроде пальм и ананасов, в такой теплице можно даже просто отдыхать за чтением книги.

При выборе этого материала следует учитывать, что классическую плитку для пола ванной комнаты использовать не стоит, в оранжерее часто используется оборудование для перевозки грузов, и напольное покрытие должно быть довольно прочным.

Последней новинкой технического оснащения теплиц стало применение технологии теплых полов, что не только обеспечивает чистоту и тепло, но и подогревает непосредственно грунт в контейнерах. Конечно, многие сразу задумаются: «А насколько это экономично и безопасно?». Как показывает практика, дороговизна такого пола заключается только в его обустройстве. Тут также потребуется стяжка и многие фермерские предприятия чтобы сэкономить для этого приобретают сухие смеси Бирсс по оптовой цене, которые также обеспечивают гидроизоляцию.

Какой бы тип отделки вы не выбрали, при обустройстве пола в теплице, необходимо помнить о дренажных каналах и водоотводах, особенно если в теплице планируется установка автоматического полива. Чтобы уровень пола был ровным, система отвода воды может быть выполнена при помощи паутины трубопроводов встроенной в стяжку пола.

Подогрев земли своими руками

Чтобы сделать систему обогрева в теплице своими руками, не обязательно использовать электрический кабель. Если конструкция находится около дома, где живет садовод, можно соорудить печку и начинать топить тогда, когда этого требуют погодные условия. Рекомендуется размещать печь в торцевой части теплицы, чтобы ее удобно было топить. По периметру помещения укладывают горизонтально дымоход.

Если фермер принял решение отапливать теплицу с помощью печки, необходимо сделать запас угля или дров, в качестве последних часто используют обрезанные сухие ветки. Такую обогревательную конструкцию можно и усовершенствовать, установив наверх водяной котел и проведя металлические трубы к баку с водой.

Системы обогрева грунта — как устроены и работают

Как сделать обогрев?

Монтаж систем осуществляется по единому принципу — обогревающий элемент размещается подпочвенно, по следующему алгоритму:

  1. Снять верхний слой грунта, примерно 40 см.
  2. Сравнять дно, после чего засыпать 5 см песка и утрамбовать.
  3. Сверху расстелить термоизоляционную плёнку, например, пенополистирол — благодаря этому есть возможность сохранить тепло и не дать ему уходить вглубь почвы.
  4. Засыпать 5 см песка.
  5. Уложить нержавеющую сетку с 5–10-сантиметровыми ячейками.
  6. Прокладка нагревательных элементов.
  7. Засыпать влажным песком — слой толщиной 5 см.
  8. Всё накрыть сеткой — для этой цели подойдет как пластиковая, так и нержавеющая. Такой слой необходим для того, чтобы защитить источник обогрева от каких-либо повреждений.
  9. В завершение засыпаем конструкцию плодородной почвой — для этого изначально снятый слой смешивают с удобрениями.

Принцип работы и устройство геотермального отопления

  • воздух – вода
  • земля – вода
  • вода – воздух
  • вода – вода
  • земля – воздух
  • вода – вода
  • воздух – воздух
  • внутреннего контура , который расположен в доме. Он (они) сделан как и при обычном отоплении и состоит из труб и радиаторов. В схему могут быть добавлены теплые полы.
  • внешнего контура , который имеет больший масштаб чем внутренний, хотя его размеры можно увидеть только в период планировки и монтажа. В процессе эксплуатации он невиден, поскольку находится под землей или под водой. Внутри этого контура циркулирует обычная вода или антифриз.
  • ключевым элементом, который связывает внешний и внутренний контур является тепловой насос , который занимает место приблизительно как стиральная машина или котел отопления.Он состоит из:-испарителя , основная функция которого – превращение в пар жидкого хладагента. Хладагент, циркулируя по замкнутому контуру, проходит через испаритель. В нем хладагент разогревается и превращается в пар. Образующийся пар под низким давлением направляется в сторону компрессора.-компрессора , основная функция которого – повышение давления и температуры паров, образующихся в результате кипения хладагента. В компрессоре пары хладагента подвергаются действию давления и их температура возрастает. Компрессор перекачивает под большим давлением разогретый пар в сторону конденсатора.-конденсатора , основная функция которого – отдаче тепловой энергии внутреннему контуру отопительной системы. Серийные образцы, изготавливаемые промышленными предприятиями, оснащаются пластинчатыми теплообменниками. Основным материалом для таких конденсаторов служит легированная сталь или медь.Для самостоятельного изготовления теплообменника подойдет медная трубка диаметром полдюйма. Толщина стенок труб, используемых для изготовления теплообменника, должна быть не менее 1 мм. При этом змеевик рассчитыается по формуле МТ/0,8 РТ, где МТ – мощность тепловой энергии, которая выдает система; 0,8 – коэффициент теплопроводности при взаимодействии воды с материалом змеевика; РТ – разница температур воды на входе и на выходе.терморегулирующий, или иначе дроссельный, клапан устанавливается в начале той части гидравлического контура, где циркулирующая среда высокого давления преобразуется в среду с низким давлением. Точнее дроссель в паре с компрессором делят контур теплового насоса на две части: одну с высокими параметрами давления, другую – с низкими.При прохождении через расширительный дроссельный вентиль циркулирующая по замкнутому контуру жидкость частично испаряется, вследствие чего давление вместе с температурой падают. Затем поступает в теплообменник, сообщающийся с окружающей средой. Там захватывает энергию среды и переносит ее обратно в систему. Т.е. с помощью дроссельного клапана происходит регулирование потока хладагента в сторону испарителя. При выборе клапана нужно учитывать параметры системы. Клапан должен соответствовать этим параметрам.
  1. Незамерзающая жидкость нагревается на глубине, под землей до температуры, к примеру, 5–7ºС и поступает в тело теплового насоса.
  2. Внутри агрегата стоит теплообменник и нагретая жидкость, проходя через него, отдает тепло второму контуру, после чего уходит под землю за новой «порцией тепла».
  3. Фреон, который испаряется во втором конуре попадает в компрессор и при сжатии его температура доходит до 100ºС, чего вполне хватает чтобы разогреть жидкость во внутреннем контуре.
  4. Разогретый фреон поступает в расширительный экран, где давление и температура нормализуются и все начинается снова.
Популярные статьи  Бурение скважин на воду как бизнес

Системы обогрева грунта — как устроены и работают
Дата: 25 сентября 2021

Классификация по конструкционному типу

Принцип работы геотермального отопления схож с принципом работы кондиционера или холодильника. Основным элементом является тепловой насос, включенный в два контура.

Принцип работы геотермального (теплового) насоса

Внутренний контур представляет собой традиционную систему отопления, состоящую из труб и радиаторов. Внешний – внушительных размеров теплообменник, находящийся под землей или толщей воды. Внутри него может циркулировать как специальная жидкость с антифризом, так и обычная вода. Теплоноситель принимает на себя температуру среды и «подогретый» поступает в тепловой насос, аккумулированное тепло передается внутреннему контуру. Таким образом происходит нагрев воды в трубах и радиаторах.

Геотермальный (тепловой) насос – ключевой элемент системы. Это компактный агрегат, занимает места не больше, чем привычная нашему взгляду стиральная машина. Если говорить о производительности, то на каждый 1 кВт потребленной электроэнергии, насос «выдает» до 4-5 кВт тепловой энергии. В то время как обычный кондиционер, который имеет схожий принцип работы, на 1 кВт затраченной электроэнергии «ответит» 1 кВт тепловой.

Схема устройства геотермального отопления в частном доме

Надо признать, что устройство этого вида отопления является самым дорогим и трудоемким на сегодняшний день. Львиную долю его стоимости составляет покупка оборудования и, конечно, земляные работы. Естественно, что бережливый хозяин задумывается, а нельзя ли сэкономить, например, на монтаже и сделать геотермальное отопление своими руками? Для того, чтобы ответить на этот вопрос, необходимо разобраться, какие же системы применяют чаще всего и уяснить особенности их устройства.

Горизонтальный теплообменник

Довольно часто используют горизонтальный контур, при устройстве которого трубы укладывают в траншеи на глубину большую, чем уровень промерзания почвы в данной местности.

Недостаток системы геотермального отопления с горизонтальным контуром — большая площадь, занимаемая коллектором

Недостаток – территория, занимаемая контуром, должна быть намного больше самого дома, так, для отопления здания площадью в 250 м², под трубы «уйдет» около 600 м². Не каждый застройщик может позволить себе подобную роскошь.

К тому же возникают неудобства, если участок уже облагорожен, приходится соблюдать, например, расстояние от деревьев (1,5 м) и многие другие нюансы.

Вертикальный теплообменник

Более компактный, но и более дорогой вариант – вертикальный теплообменник. Для его установки не потребуется большая площадь, но зато потребуется специальное бурильное оборудование.

Монтаж вертикального теплообменника требует использования специального бурильного оборудования

Глубина скважины, в зависимости от технологии, может достигать 50-200 м, зато срок ее службы до 100 лет. Особенно актуален этот способ, когда планируют геотермальное отопление загородного дома с обустроенной прилегающей территорией, он позволяет сохранить ландшафт практически в первозданном виде.

Водоразмещенный теплообменник

Наиболее экономичная геотермальная установка использует тепловую энергию воды. Ее рекомендуют, если расстояние до ближайшего водоема не превышает 100 м.

Водоразмещенный теплообменник является наиболее выгодным и следовательно более целесообразным для устройства

Контур из труб в виде спирали укладывают на дно, глубина залегания должна быть меньше 2,5-3 м, то есть глубже зоны промерзания. Площадь водоема – от 200 м². Главный плюс – нет необходимости выполнять трудоемкие земляные работы, но необходимо получить разрешение специальных служб. Затратив значительные средства на дорогостоящее оборудование, не стоит экономить на качественном монтаже. Ведь именно от него будет зависеть качество и эффективность всей системы.

Как видим, смонтировать геотермальное отопление дома своими руками не так уж просто. Из всех перечисленных видов, пожалуй, только последний вариант будет достаточно просто воплотить в жизнь самостоятельно. Но даже в этом случае стоит взвесить, все «за» и «против».

Обустройство пола в теплице

По своей конструкции и принципу использования площади теплицы бывают двух типов: теплицы, в которых используется основной грунт участка, покрытые каркасной конструкцией, обтянутой полиэтиленом или поликарбонатом, и теплицы – теплицы, которые имеют полноценный фундамент и предназначены для выращивания сельскохозяйственных культур и рассады в специальных емкостях на стеллажах или на полу.

Популярные статьи  Как сделать черновой потолок по деревянным балкам

Последние часто используют для выращивания клубники по голландской технологии, так как дают урожай круглый год.

Пол в теплице не должен быть просто земляным, так как каждый раз после полива он будет превращаться в грязь. Можно сделать насыпь из щебня, песка и даже гальки, но передвигаться по такой поверхности, например, на телеге или больших мешках с землей, довольно сложно.

Чтобы такая теплица была не только теплой, чистой, но и комфортной, пол делают из бетонной стяжки. Если средства позволяют, а душа требует красоты, можно пол в теплице застелить тротуарной плиткой, но в пазах между плиткой от влаги может образоваться грибок или завелись муравьи.

В европейских странах пол теплицы часто облицовывают керамической плиткой. Согласитесь, это очень красиво и если вы, например, любите выращивать тропические растения, такие как пальмы и ананасы, в такой теплице тоже можно просто расслабиться, прочитав книгу.

Выбирая этот материал, следует учитывать, что нельзя использовать классическую плитку для пола для ванной, в теплице часто используется оборудование для перевозки грузов, а напольное покрытие должно быть достаточно прочным.

Последней новинкой в ​​техническом оснащении теплиц является использование технологии теплых полов, которая не только обеспечивает уборку и тепло, но и прогревает почву прямо в контейнерах. Конечно, многие сразу подумают: «Насколько это дешево и безопасно?». Как показывает практика, дороговизна такой планировки заключается только в ее обустройстве. Стяжка здесь тоже нужна, а в целях экономии многие хозяйства покупают по оптовой цене сухие смеси Birss, которые также обеспечивают гидроизоляцию.

Какой бы вид отделки ни был выбран, при устройстве пола в теплице необходимо помнить о дренажных каналах и дренажных системах, особенно если в теплице планируется установка автоматического полива. Для поддержания равномерного уровня пола систему отвода воды можно выполнить с помощью сети труб, встроенных в стяжку.

Теплая грядка в теплице из поликарбоната: биологический способ

Биологический способ обогрева грядок производится при помощи природного биотоплива, уложенного в подпочвенный слой. В качестве наполнителя используют остатки растений, опилки и навоз, который проливают водой для процесса гниения. Такие грядки являются самой экономной конструкцией.

Системы обогрева грунта — как устроены и работают

Теплые грядки, работающие на природном топливе принято, разделять по типу конструкции:

  • Заглубленные, когда снимается плодородная земля, вырывается траншея, укладывается компост и заполняется сверху почвой так, чтобы она была на уровне общей массы земли;
  • Приподнятые грядки, верхний слой земли снимается с поверхности и укладывается в специальные деревянные короба, которые служат защитой от осыпания и вымывания земли в процессе эксплуатации;
  • Холмообразная грядка, укладывается без короба поверх основной площадки;
  • Комбинированный вариант, когда нижние слои с органикой укладывают на уровне земли, а плодородный слой почвы фиксируют коробом.

Чтобы сделать конструкцию комбинированной теплой гряды, необходимо разметить места для будущих посадок. Затем аккуратно снять слой дерна, отложив плодородную землю в сторону. Далее необходимо вырыть траншею глубиной до 60 см. Для защиты от промерзания на дно траншеи укладывают пенопласт или закрытую пластиковую тару. Далее начинается первый слой органики, состоящий из крупных веток, деревянных чурок, крупных объектов растений.

После идет слой более мелкой органики, пищевые отходы, листья деревьев, мелкие стебли травы. Далее насыпаем готовый компост, или полу перепревший навоз, для начала процесса гниения. Устанавливаем заранее подготовленный короб, в который будем насыпать плодородную почву. Каждый уложенный слой необходимо хорошо пролить водой. Последний слой укрываем плодородной землей. Почва, обогащенная органикой, отлично подойдет для посадки томата, тыквы и огурцов. Процесс гниения способен греть землю на протяжении 2 месяцев.

Классификация систем теплого пола для теплиц

Мы предлагаем следующую классификацию используемых в теплицах систем теплых полов:

Водяной теплый пол в теплице

Такая система обогрева сооружений для выращивания различных культур является наиболее распространенной. О ней детально мы рассказывали в предыдущих наших публикациях.

Электрический теплый пол

С нагревательными кабелями

Для кабельного подогрева земли в теплице используют электронагревательный кабель, имеющий удельную мощность от 75 до 100 Вт/м2.

Для кабельного подогрева земли в теплице используют электронагревательный кабель, имеющий удельную мощность от 75 до 100 Вт/м2

С нагревательными матами, которые бывают двух типов

С кабельными нагревательными матами. Нагревательный кабельный мат представляет собой рулон сеточного полотна (иногда самоклеющегося) с закрепленным на нем «змейкой» нагревательным кабелем. Мат раскладывается на поверхности любой конфигурации без стяжки, легко режется. Удельная мощность изделия – около 150 Вт/м2. С карбоновыми стержневыми нагревательными матами. Они представляет собой гибкий материал с множеством параллельно расположенных с шагом 10 см нагревательных карбоновых стержней. Обеспечивают экономию затрат на электроэнергию до 60 % по сравнению с кабельными матами.

Теплый пол с инфракрасными карбоновыми нагревательными пленками

Представляет собой рулон многослойной водонепроницаемой PET-пленки толщиной 0,4 мм с запаянным сплошным углеродным полимерным слоем и токопроводящими медными шинами. Удельная мощность пленки – 30-35 Вт/м2. Пленка излучает инфракрасные электромагнитные волны, благотворно влияющие на рост растений.

Теплый пол с инфракрасными карбоновыми нагревательными пленками. Представляет собой рулон многослойной водонепроницаемой PET-пленки толщиной 0,4 мм с запаянным сплошным углеродным полимерным слоем и токопроводящими медными шинами. Удельная мощность пленки – 30-35 Вт/м2. Пленка излучает инфракрасные электромагнитные волны, благотворно влияющие на рост растений.

Оптимальный диапазон температуры почвы составляет 14-25°С, снижение ее до 10°С и ниже затрудняет усваивание растениями фосфора и способствует т.наз. фосфорному голоданию; повышение температуры почвы до 25-28°С и выше приводит к плохому всасыванию влаги корнями растений, в результате чего они увядают даже при регулярном поливе.

Популярные статьи  Несколько причин, по которым газовый котел щелкает и шумит. Как устранить неисправности

Для предотвращения пересыхания грунта рекомендуется для теплиц с одинарным слоем покрытия применять теплый пол с удельной мощностью 70-120 Вт/м2, а для теплицы с двойным слоем покрытия – 50-100 Вт/м2 .

Каждому типу теплого пола присущи свои особенности в монтаже, рассмотренные ниже.

Твердотопливные системы

Актуальность сжигания твердого топлива для получения энергии со временем не снижается. Это касается и применения твердотопливных систем для обогрева теплиц, что обусловлено рядом преимуществ:

  • цена топлива находится на доступном уровне;
  • автономность системы становится возможной из-за отсутствия потребностей в снабжении газом и электричеством. Это обстоятельство позволяет сооружать отапливаемые теплицы в удаленных местах;
  • экономичность отопительных агрегатов.

Твердотопливные систем для обогрева Получили наибольшее распространение следующие системы, работающие на твердом топливе:

  1. Инфракрасные. По сути это всем известная буржуйка, которая устанавливается в центральной части теплицы. Экономичность конструкции достигается невысокой стоимостью самого отопительного прибора и незначительным расходом энергоносителя.
  2. Водяные. Все достоинства систем отопления, работающих на газу или электроэнергии, в полной мере относятся к водяному отоплению на твердом топливе. При этом при использовании последних достигается значительная экономия за счет снижения эксплуатационных расходов.

Следует отметить, что такие системы несовершенны и обладают определенными недостатками:

  • на всех этапах сооружения системы отопления необходимо обеспечить надежную противопожарную защиту;
  • стоимость оборудования возрастает при организации системы, работающей в автоматическом режиме.

Принцип действия ↑

Тепловые насосы для отопления, принцип действия которых схож с работой холодильников, кондиционеров и другого оборудования, способного переносить тепло из окружающей среды в помещение, забирают тепло из почвы, грунта, грунтовых вод, самого воздуха.

Принцип действия теплового насоса

Суть работы заключается в следующем.
По внешнему контуру системы отопления движется незамерзающая жидкость, которая напитывается теплом окружающей среды.
В насосе эта жидкость отдает порядка 5 градусов хладагенту и продолжает циркулировать.
Хладагент закипает (при температуре -10°C), переходя в газообразное состояние, компрессор сжимает газ, что приводит к повышению температуры.
Попадая в теплообменник, этот газ отдает тепло внутреннему контуру отопления, сам остывает, превращаясь снова в жидкость и возвращается в испаритель.

Как и холодильный агрегат, тепловой насос потребляет определенную энергию на то, чтобы реализовать термодинамический цикл (привод компрессора). Отношение теплопроизводительности к электропотреблению (так выводится коэффициент преобразования теплового насоса) зависит от уровней температуры в испарителе и конденсаторе. Уровень теплоснабжения от тепловых насосов на настоящий момент варьируется от 35 град. C до 62 град.C, что в общем-то позволяет использовать любую из отопительных систем.
При грамотном подходе экономия на энергетических ресурсах может доходить до 70 %.
Промышленность экономически и промышленно развитых стран производит обширный спектр парокомпрессионных тепловых насосов с мощностью от 5 до 1000 кВт.

Принцип действия тепловых насосов очень хорошо показан в этом коротеньком видео.

Как вы понимаете, расходы на отопление занимают свыше половины всех энергозатрат здания, поэтому сделать его максимально эффективным и дешевым — приоритетная задача. Можно ли создать экономичную систему отопления тепловым насосом без газа? Смотрите видео.

Данное оборудование бывает нескольких типов, от чего и зависят их технические характеристики.

  1. Грунт-вода – внешний контур проходит под землей, а в качестве теплоносителя используется вода. Наружный контур может располагаться вертикально или горизонтально, а также может быть помещен в водоем, расположенный поблизости.
    AlTherm (Украина). Тепловой насос для отопления дома площадью до 300 м2. Технические характеристики: теплопроизводительность 4-18 кВт, холодопроизводительность 3,6-11,3 кВт, производительность насоса внешнего контура 0,36-1,02 л/с, внутреннего – 0,14-0,39 л/с. Теплоносителем выступает пропилен гликоль. Модельный ряд представлен также насосами большой мощности (для помещений 300-1000 м2 и свыше 1000 м2).
  2. Вода-вода – внешний контур проходит через скважину или водоем, внутренний наполнен водой. Источником тепла в этом случае являются подземные грунтовые воды, кроме этого можно использовать как сбросовые, так и технологическую воду.
    Vaillant (Германия). Тепловая мощность 26,9-29,9 кВт, температура рассола 4-20°C, температура подачи контура отопления 25-62°C, коэффициент преобразования COP 3,5.
  3. Воздух-вода – источником тепла выступает воздух, в том числе теплый сбросовый. Этот тип оборудования может работать и на охлаждение. Кроме этого, его можно подключать к уже имеющейся системе отопления.
    Vesper (Китай). Оснащен циркуляционным насосом и ТЭНом, управление осуществляется с помощью контроллера. Технические характеристики: тепловая мощность 6-16 кВт, скорость потока в системе отопления 0,45-0,76 л/с, скорость воздушного охлаждающего потока 3-5 тыс. м3/ч.
  4. Воздух-воздух – внешний контур наполняется воздухом из окружающей среды, система отопления – воздушная. Тепловые насосы для отопления данного типа работают по принципу кондиционера, отличаются тем, что способны работать при более низкой уличной температуре. Оснащены высокопроизводительным радиальным вентилятором, способны осушать воздух и поддерживать определенный микроклимат в помещении. Управление осуществляется пультом.
    Mitsubishi. Могут быть вмонтированы в систему «умный дом», имеют систему фильтрации воздуха (плазменная очистка). Характеристики: теплопроизводительность 3,2-6 кВт, холодопроизводительность 2,5-5 кВт, расход воздуха 1086-2940 м3/ч, коэффициент производительности СОР 5,15-3,31.

Оцените статью
Максим Мальцев
Добавить комментарии

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Системы обогрева грунта — как устроены и работают
Сколько литров воды в 7-секционной чугунной батарее